
PROGRAMMING IN C

- III BSC Mathematics

Dr P.V. Praveen Sundar,

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

06-12-2021

Introduction
2

 C is a general-purpose, high-level language that was originally developed by
Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. C was
originally first implemented on the DEC PDP-11 computer in 1972.

 In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K&R standard.

 The UNIX operating system, the C compiler, and essentially all UNIX application
programs have been written in C.

 C has now become a widely used professional language for various reasons −

 Easy to learn

 Structured language

 It produces efficient programs

 It can handle low-level activities

 It can be compiled on a variety of computer platforms.

Facts about C
3

 C was invented to write an operating system called UNIX.

 C is a successor of B language which was introduced around the early
1970s.

 The language was formalized in 1988 by the American National Standard
Institute (ANSI).

 The UNIX OS was totally written in C.

 Today C is the most widely used and popular System Programming
Language.

 Most of the state-of-the-art software have been implemented using C.

 Today's most popular Linux OS and MySQL have been written in C.

Origin of C
4

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Features
5

C is the widely used language. It provides many features that are given below.

 Simple

 Machine Independent or Portable

 Mid-level programming language

 Structured programming language

 Rich Library

 Memory Management

 Fast Speed

 Pointers

 Recursion

 Extensible

C Program Basics
6

C is a structured
programming
language. Every
c program and
its statements
must be in a
particular
structure. Every
c program has
the following
general
structure...

7

 Line 1: Comments - They are ignored by the compiler

 This section is used to provide a small description of the
program. The comment lines are simply ignored by the
compiler, that means they are not executed. In C, there are
two types of comments.
 Single Line Comments: Single line comment begins with // symbol.

We can write any number of single line comments.

 Multiple Lines Comments: Multiple lines comment begins with /*
symbol and ends with */. We can write any number of multiple
lines comments in a program.

8

 In a C program, the comment lines are optional. Based on the requirement,
we write comments. All the comment lines in a C program just provide the
guidelines to understand the program and its code.

 Line 2: Preprocessing Commands

 Preprocessing commands are used to include header files and to define
constants. We use the #include statement to include the header file into our
program. We use a #define statement to define a constant. The
preprocessing statements are used according to the requirements. If we
don't need any header file, then no need to write #include statement. If we
don't need any constant, then no need to write a #define statement.

9

Line 3: Global Declaration

 The global declaration is used to define the global variables, which are
common for all the functions after its declaration. We also use the global
declaration to declare functions. This global declaration is used based on
the requirement.

Line 4: int main()

 Every C program must write this statement. This statement (main) specifies
the starting point of the C program execution. Here, main is a user-defined
method which tells the compiler that this is the starting point of the
program execution. Here, int is a data type of a value that is going to
return to the Operating System after completing the main method
execution. If we don't want to return any value, we can use it as void.

10

Line 5: Open Brace ({)

 The open brace indicates the beginning of the block which belongs to the main
method. In C program, every block begins with a '{' symbol.

Line 6: Local Declaration

 In this section, we declare the variables and functions that are local to the function or
block in which they are declared. The variables which are declared in this section
are valid only within the function or block in which they are declared.

Line 7: Executable statements

 In this section, we write the statements which perform tasks like reading data,
displaying the result, calculations, etc., All the statements in this section are written
according to the requirements.

Line 8: Return Statement

 Return Statement will returns the value to the operating system.

11

Line 9: Closing Brace (})

 The close brace indicates the end of the block which belongs to the
main method. In C program every block ends with a '}' symbol.

Line 10, 11, 12, ...: User-defined function()

 This is the place where we implement the user-defined functions. The
user-defined function implementation can also be performed
before the main method. In this case, the user-defined function need
not be declared. Directly it can be implemented, but it must be
before the main method. In a program, we can define as many
user-defined functions as we want. Every user-defined function
needs a function call to execute its statements.

12

General rules for any C program

 Every executable statement must end with a semicolon symbol (;).

 Every C program must contain exactly one main method (Starting
point of the program execution).

 All the system-defined words (keywords) must be used in lowercase
letters.

 Keywords can not be used as user-defined names(identifiers).

 For every open brace ({), there must be respective closing brace (}).

 Every variable must be declared before it is used.

C Character Set
13

 As every language contains a set of characters used to construct words,
statements, etc., C language also has a set of characters that include
alphabets, digits, and special symbols. C language supports a total of 256
characters.

 Every C program contains statements. These statements are constructed
using words and these words are constructed using characters from the C
character set. C language character set contains the following set of
characters.

 Alphabets

 Digits

 Special Symbols

14

Alphabets

 C language supports all the alphabets from the English language. Lower and upper case letters
together support 52 alphabets.

 lower case letters - a to z

 UPPER CASE LETTERS - A to Z

Digits

 C language supports 10 digits which are used to construct numerical values in C language.

 Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

 C language supports a rich set of special symbols that include symbols to perform
mathematical operations, to check conditions, white spaces, backspaces, and other special
symbols.

 Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ | tab newline space NULL
bell backspace vertical tab etc.,

15

Creating and Running C Program
16

 Generally, the programs created using programming languages like C, C++, Java, etc.,

are written using a high-level language like English. But, the computer cannot understand

the high-level language. It can understand only low-level language. So, the program

written in the high-level language needs to be converted into the low-level language to

make it understandable for the computer. This conversion is performed using either

Interpreter or Compiler.

 Popular programming languages like C, C++, Java, etc., use the compiler to convert

high-level language instructions into low-level language instructions.

 A compiler is a program that converts high-level language instructions into low-level

language instructions. Generally, the compiler performs two things, first it verifies the

program errors, if errors are found, it returns a list of errors otherwise it converts the

complete code into the low-level language.

17

18

Step 1: Creating a Source Code

 Source code is a file with C programming instructions in a high-level language. To
create source code, we use any text editor to write the program instructions. The
instructions written in the source code must follow the C programming language rules.
The following steps are used to create a source code file in Windows OS…

 Click on the Start button

 Select Run

 Type cmd and press Enter

 Type cd c:\TC\bin in the command prompt and press Enter

 Type TC press Enter

 Click on File -> New in C Editor window

 Type the program

 Save it as FileName.c (Use shortcut key F2 to save)

19

Step 2: Compile Source Code (Alt + F9)

 The compilation is the process of converting high-level language instructions into low-
level language instructions. We use the shortcut key Alt + F9 to compile a C
program in Turbo C.

 The compilation is the process of converting high-level language instructions into low-
level language instructions.

 Whenever we press Alt + F9, the source file is going to be submitted to the
Compiler. On receiving a source file, the compiler first checks for the Errors. If there
are any Errors then compiler returns List of Errors, if there are no errors then the
source code is converted into object code and stores it as a file with .obj extension.
Then the object code is given to the Linker. The Linker combines both the object code
and specified header file code and generates an Executable file with a .exe
extension.

20

Step 3: Executing / Running Executable File (Ctrl + F9)

 After completing compilation successfully, an executable file is created with
a .exe extension. The processor can understand this .exe file content so that
it can perform the task specified in the source file.

 We use a shortcut key Ctrl + F9 to run a C program. Whenever we press
Ctrl + F9, the .exe file is submitted to the CPU. On receiving .exe file, CPU
performs the task according to the instruction written in the file. The result
generated from the execution is placed in a window called User Screen.

Step 4: Check Result (Alt + F5)

 After running the program, the result is placed into User Screen. Just we
need to open the User Screen to check the result of the program execution.
We use the shortcut key Alt + F5 to open the User Screen and check the
result.

Execution Process of a C Program
21

22

Overall Process

 Type the program in C editor and save with .c extension (Press F2 to save).

 Press Alt + F9 to compile the program.

 If there are errors, correct the errors and recompile the program.

 If there are no errors, then press Ctrl + F9 to execute/run the program.

 Press Alt + F5 to open User Screen and check the result.

C Tokens
23

 Every C program is a collection of instructions and every instruction is a collection of
some individual units. Every smallest individual unit of a c program is called token.
Every instruction in a c program is a collection of tokens. Tokens are used to construct
c programs and they are said to the basic building blocks of a c program.

 In a c program tokens may contain the following...

 Keywords

 Identifiers

 Operators

 Special Symbols

 Constants

 Strings

 Data values

 In a C program, a collection of all the keywords, identifiers, operators, special
symbols, constants, strings, and data values are called tokens.

24

Consider the following C program...

#include<stdio.h>

#include<conio.h>

int main() {

int i;

clrscr();

printf("ASCII ==> Character\n");

for(i = -128; i <= 127; i++)

printf("%d ==> %c\n", i, i);

getch();

return 0;

}

C Keywords
25

 As every language has words to construct statements, C programming also has

words with a specific meaning which are used to construct c program instructions.

In the C programming language, keywords are special words with predefined

meaning. Keywords are also known as reserved words in C programming

language.

 In the C programming language, there are 32 keywords. All the 32 keywords

have their meaning which is already known to the compiler.

 Keywords are the reserved words with predefined meaning which already

known to the compiler

 Whenever C compiler come across a keyword, automatically it understands its

meaning.

26

 Properties of Keywords
 All the keywords in C programming language are defined as

lowercase letters so they must be used only in lowercase letters

 Every keyword has a specific meaning, users can not change that
meaning.

 Keywords can not be used as user-defined names like variable,
functions, arrays, pointers, etc...

 Every keyword in C programming language represents something
or specifies some kind of action to be performed by the compiler.

 The following table specifies all the 32 keywords with their
meaning

27

C Identifiers
28

 In C programming language, programmers can specify their name to a variable,
array, pointer, function, etc... An identifier is a collection of characters which acts as
the name of variable, function, array, pointer, structure, etc... In other words, an
identifier can be defined as the user-defined name to identify an entity uniquely in
the c programming language that name may be of the variable name, function
name, array name, pointer name, structure name or a label.

 The identifier is a user-defined name of an entity to identify it uniquely during the
program execution.

 Example

int marks;

char studentName[30];

 Here, marks and studentName are identifiers.

Rules for Creating Identifiers
29

 An identifier can contain letters (UPPERCASE and lowercase), numerics &
underscore symbol only.

 An identifier should not start with a numerical value. It can start with a letter or
an underscore.

 We should not use any special symbols in between the identifier even
whitespace. However, the only underscore symbol is allowed.

 Keywords should not be used as identifiers.

 There is no limit for the length of an identifier. However, the compiler considers
the first 31 characters only.

 An identifier must be unique in its scope.

Rules for Creating Identifiers for better programming
30

 The following are the commonly used rules for creating
identifiers for better programming...
 The identifier must be meaningful to describe the entity.

 Since starting with an underscore may create conflict with system
names, so we avoid starting an identifier with an underscore.

 We start every identifier with a lowercase letter. If an identifier
contains more than one word then the first word starts with a
lowercase letter and second word onwards first letter is used as an
UPPERCASE letter. We can also use an underscore to separate
multiple words in an identifier.

 int a,b;

 float _a;

 char _123;

 double pi;

 int value,Value,vAlue;

 int Auto;

 int a b;

 float 123a;

 char str-;

 double pi, a;

 int break;

31

Valid Identifiers Invalid Identifiers

Datatypes
32

 Data used in c program is classified into different types based on its properties. In

the C programming language, a data type can be defined as a set of values with

similar characteristics. All the values in a data type have the same properties.

 Data types in the c programming language are used to specify what kind of value

can be stored in a variable. The memory size and type of the value of a variable

are determined by the variable data type. In a c program, each variable or

constant or array must have a data type and this data type specifies how much

memory is to be allocated and what type of values are to be stored in that variable

or constant or array. The formal definition of a data type is as follows...

 The Data type is a set of value with predefined characteristics. data types are

used to declare variable, constants, arrays, pointers, and functions.

33

34

 In the c programming language, data types are classified as follows...

 Primary data types (Basic data types or Predefined data types)

 Derived data types (Secondary data types OR User-defined data types)

 Enumeration data types

 Void data type

 Primary data types

 The primary data types in the C programming language are the basic data types. All
the primary data types are already defined in the system. Primary data types are also
called as Built-In data types. The following are the primary data types in c
programming language...

 Integer data type

 Floating Point data type

 Double data type

 Character data type

35

Integer Data type
36

 The integer data type is a set of whole numbers. Every
integer value does not have the decimal value. We use
the keyword "int" to represent integer data type in c.
We use the keyword int to declare the variables and to
specify the return type of a function. The integer data
type is used with different type modifiers like short,
long, signed and unsigned. The following table provides
complete details about the integer data type.

37

Floating Point Data Types
38

 Floating-point data types are a set of numbers with the decimal
value. Every floating-point value must contain the decimal value.
The floating-point data type has two variants...

 float

 double

 We use the keyword "float" to represent floating-point data type
and "double" to represent double data type in c. Both float and
double are similar but they differ in the number of decimal places.
The float value contains 6 decimal places whereas double value
contains 15 or 19 decimal places. The following table provides
complete details about floating-point data types.

39

Character Data Type

 The character data type is a set of characters enclosed in single quotations. The

following table provides complete details about the character data type.

40

41

The following table provides complete information about all the data types in c programming
language..

42

void data type

 The void data type means nothing or no value. Generally, the void is used to specify a function
which does not return any value. We also use the void data type to specify empty parameters
of a function.

Enumerated data type

 An enumerated data type is a user-defined data type that consists of integer constants and
each integer constant is given a name. The keyword "enum" is used to define the enumerated
data type.

Derived data types

 Derived data types are user-defined data types. The derived data types are also called as
user-defined data types or secondary data types. In the c programming language, the derived
data types are created using the following concepts...

 Arrays

 Structures

 Unions

 Enumeration

Variables
43

 Variables in a c programming language are the named memory locations where the user can
store different values of the same datatype during the program execution. In other words, a
variable can be defined as a storage container to hold values of the same datatype during the
program execution.

 The formal definition of a variable is as follows...

 Variable is a name given to a memory location where we can store different values of the
same datatype during the program execution.

 Every variable in c programming language must be declared in the declaration section before it
is used. Every variable must have a datatype that determines the range and type of values be
stored and the size of the memory to be allocated.

 A variable name may contain letters, digits and underscore symbol. The following are the rules
to specify a variable name...

 Variable name should not start with a digit.

 Keywords should not be used as variable names.

 A variable name should not contain any special symbols except underscore(_).

 A variable name can be of any length but compiler considers only the first 31 characters of the
variable name.

44

Declaration of Variable

 Declaration of a variable tells the compiler to allocate the required amount of
memory with the specified variable name and allows only specified datatype
values into that memory location. In C programming language, the declaration
can be performed either before the function as global variables or inside any
block or function. But it must be at the beginning of block or function.

Declaration Syntax:

datatype variableName;

Example

int number;

 The above declaration tells to the compiler that allocates 2 bytes of memory
with the name number and allows only integer values into that memory location.

Constants
45

 In C programming language, a constant is similar to the variable but the constant

hold only one value during the program execution. That means, once a value is

assigned to the constant, that value can't be changed during the program

execution. Once the value is assigned to the constant, it is fixed throughout the

program. A constant can be defined as follows...

 A constant is a named memory location which holds only one value throughout the

program execution.

 In C programming language, a constant can be of any data type like integer,

floating-point, character, string and double, etc.,

Integer constants
46

 An integer constant can be a decimal integer or octal integer or hexadecimal
integer. A decimal integer value is specified as direct integer value whereas octal
integer value is prefixed with 'o' and hexadecimal value is prefixed with 'OX'.

 An integer constant can also be unsigned type of integer constant or long type of
integer constant. Unsigned integer constant value is suffixed with 'u' and long integer
constant value is suffixed with 'l' whereas unsigned long integer constant value is
suffixed with 'ul'.

 Example

 125 → Decimal Integer Constant

 O76 → Octal Integer Constant

 OX3A → Hexa Decimal Integer Constant

 50u → Unsigned Integer Constant

 30l → Long Integer Constant

 100ul → Unsigned Long Integer Constant

47

Floating Point constants

 A floating-point constant must contain both integer and decimal parts. Some times it may also
contain the exponent part. When a floating-point constant is represented in exponent form, the
value must be suffixed with 'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.

Character Constants

 A character constant is a symbol enclosed in single quotation. A character constant has a
maximum length of one character.

Example

'A'

'2'

'+'

String Constants
48

A string constant is a collection of characters, digits, special symbols and escape
sequences that are enclosed in double quotations.

We define string constant in a single line as follows...

"This is C Programming class"

We can define string constant using multiple lines as follows...

" This\

is\

C Programming class "

We can also define string constant by separating it with white space as follows...

"This" "is" " C Programming "

All the above three defines the same string constant.

Creating constants in C
49

 In a c programming language, constants can be created using two concepts...

 Using the 'const' keyword

 Using '#define' preprocessor

Using the 'const' keyword

 We create a constant of any datatype using 'const' keyword. To create a constant, we prefix the
variable declaration with 'const' keyword.

 The general syntax for creating constant using 'const' keyword is as follows...

const datatype constantName ;

OR

const datatype constantName = value ;

 Example

const int x = 10 ;

Here, 'x' is a integer constant with fixed value 10.

Example Program
50

#include<stdio.h>

#include<conio.h>

void main()

{

int i = 9 ;

const int x = 10 ;

i = 15 ;

x = 100 ; // creates an error

printf("i = %d\n x = %d", i, x) ;

}

The above program gives an error because we are trying to change the constant variable value (x = 100).

Using '#define' preprocessor

We can also create constants using
'#define' preprocessor directive.
When we create constant using this
preprocessor directive it must be
defined at the beginning of the
program (because all the
preprocessor directives must be
written before the global
declaration).

We use the following syntax to
create constant using '#define'
preprocessor directive...

#define CONSTANTNAME value

Example

#define PI 3.14

Here, PI is a constant with value 3.14

Example Program

#define PI 3.14

void main(){

int r, area ;

printf("Please enter the radius of circle : ") ;

scanf("%d", &r) ;

area = PI * (r * r) ;

printf("Area of the circle = %d", area) ;

}

51

Operators
52

 An operator is a symbol used to perform arithmetic and logical operations in a
program. That means an operator is a special symbol that tells the compiler to
perform mathematical or logical operations. C programming language supports a
rich set of operators that are classified as follows.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Increment & Decrement Operators

 Assignment Operators

 Bitwise Operators

 Conditional Operator

 Special Operators

Arithmetic Operators (+, -, *, /, %)
53

 The arithmetic operators are the symbols that are used to perform basic mathematical operations like

addition, subtraction, multiplication, division and percentage modulo. The following table provides

information about arithmetic operators.

 The addition operator can be used with numerical data types and character data type. When it is

used with numerical values, it performs mathematical addition and when it is used with character data

type values, it performs concatenation (appending).

 The remainder of the division operator is used with integer data type only.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Remainder of the Division 5 % 2 = 1

54

55

Relational Operators (<, >, <=, >=, ==, !=)
56

 The relational operators are the symbols that are used to compare two values. That means the relational

operators are used to check the relationship between two values. Every relational operator has two results TRUE

or FALSE. In simple words, the relational operators are used to define conditions in a program. The following

table provides information about relational operators.

Operator Meaning Example

<
Returns TRUE if the first value is smaller than second value

otherwise returns FALSE
10 < 5 is FALSE

>
Returns TRUE if the first value is larger than second value

otherwise returns FALSE
10 > 5 is TRUE

<=
Returns TRUE if the first value is smaller than or equal to second

value otherwise returns FALSE
10 <= 5 is FALSE

>=
Returns TRUE if the first value is larger than or equal to second

value otherwise returns FALSE
10 >= 5 is TRUE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is FALSE

!= Returns TRUE if both values are not equal otherwise returns FALSE 10 != 5 is TRUE

57

58

Logical Operators (&&, ||, !)
59

 The logical operators are the symbols that are used to combine multiple conditions into one condition. The

following table provides information about logical operators.

 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is FALSE then complete

condition becomes FALSE.

 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE then complete

condition becomes TRUE.

Operator Meaning Example

&&
Logical AND - Returns TRUE if all conditions are TRUE

otherwise returns FALSE
10 < 5 && 12 > 10 is FALSE

||
Logical OR - Returns FALSE if all conditions are FALSE

otherwise returns TRUE
10 < 5 || 12 > 10 is TRUE

!
Logical NOT - Returns TRUE if condition is FALSE and returns

FALSE if it is TRUE
!(10 < 5 && 12 > 10) is TRUE

60

61

Increment & Decrement Operators (++ & --)
62

 The increment and decrement operators are called unary operators because both need only one

operand. The increment operators adds one to the existing value of the operand and the decrement

operator subtracts one from the existing value of the operand. The following table provides

information about increment and decrement operators.

 The increment and decrement operators are used Infront of the operand (++a) or after the operand

(a++). If it is used in front of the operand, we call it as pre-increment or pre-decrement and if it is

used after the operand, we call it as post-increment or post-decrement.

Operator Meaning Example

++
Increment - Adds one to

existing value

int a = 5;

a++; ⇒ a = 6

--
Decrement - Subtracts one

from existing value

int a = 5;

a--; ⇒ a = 4

Pre-Increment or Pre-Decrement
63

 In the case of pre-increment, the value of the variable is increased by one before the expression

evaluation. In the case of pre-decrement, the value of the variable is decreased by one before the

expression evaluation. That means, when we use pre-increment or pre-decrement, first the value of

the variable is incremented or decremented by one, then the modified value is used in the expression

evaluation.

Post-Increment or Post-Decrement
64

 In the case of post-increment, the value of the variable is increased by one after the expression

evaluation. In the case of post-decrement, the value of the variable is decreased by one after the

expression evaluation. That means, when we use post-increment or post-decrement, first the expression

is evaluated with existing value, then the value of the variable is incremented or decremented by one.

Assignment Operators (=, +=, -=, *=, /=, %=)
65

 The assignment operators are used to assign right-hand side value (Rvalue) to the left-hand side variable

(Lvalue). The assignment operator is used in different variants along with arithmetic operators. The

following table describes all the assignment operators in the C programming language.

Operator Meaning Example

= Assign the right-hand side value to left-hand side variable A = 15

+= Add both left and right-hand side values and store the result into left-hand side variable
A += 10

⇒ A = A+10

-=
Subtract right-hand side value from left-hand side variable value and store the result into left-

hand side variable

A -= B

⇒ A = A-B

*=
Multiply right-hand side value with left-hand side variable value and store the result into left-

hand side variable

A *= B

⇒ A = A*B

/=
Divide left-hand side variable value with right-hand side variable value and store the result into

the left-hand side variable

A /= B

⇒ A = A/B

%=
Divide left-hand side variable value with right-hand side variable value and store the

remainder into the left-hand side variable

A %= B

⇒ A = A%B

66

67

Bitwise Operators (&, |, ^, ~, >>, <<)
68

 The bitwise operators are used to perform bit-level operations in the c programming language. When we use the bitwise operators,

the operations are performed based on the binary values. The following table describes all the bitwise operators in the C

programming language. Let us consider two variables A and B as A = 25 (11001) and B = 20 (10100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1 otherwise it is 0
A & B

⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0 otherwise it is 1
A | B

⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are same otherwise it is 1
A ^ B

⇒ 13 (01101)

~ the result of Bitwise once complement is negation of the bit (Flipping)
~A

⇒ 6 (00110)

<<
the Bitwise left shift operator shifts all the bits to the left by the specified number

of positions

A << 2

⇒ 100 (1100100)

>>
the Bitwise right shift operator shifts all the bits to the right by the specified

number of positions

A >> 2

⇒ 6 (00110)

69

70

Conditional Operator (?:)
71

 The conditional operator is also called a ternary operator because it requires three operands. This

operator is used for decision making. In this operator, first we verify a condition, then we perform one

operation out of the two operations based on the condition result. If the condition is TRUE the first

option is performed, if the condition is FALSE the second option is performed. The conditional

operator is used with the following syntax.

 Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?100:200; ⇒ A value is 100

72

73

Special Operators (sizeof, pointer, comma, dot, etc.)
74

 The following are the special operators in c programming language.

sizeof operator

 This operator is used to find the size of the memory (in bytes) allocated for a variable. This
operator is used with the following syntax.

 sizeof(variableName);

Example

 sizeof(A); ⇒ the result is 2 if A is an integer

Pointer operator (*)

 This operator is used to define pointer variables in c programming language.

 Comma operator (,)

 This operator is used to separate variables while they are declaring, separate the expressions in
function calls, etc.

Dot operator (.)

 This operator is used to access members of structure or union.

Expression
75

 In any programming language, if we want to perform any calculation or to frame any condition
etc., we use a set of symbols to perform the task. These set of symbols makes an expression.

 In the C programming language, an expression is defined as follows.

 An expression is a collection of operators and operands that represents a specific value.

 In the above definition, an operator is a symbol that performs tasks like arithmetic operations,
logical operations, and conditional operations, etc.

 Operands are the values on which the operators perform the task. Here operand can be a
direct value or variable or address of memory location.

 In the C programming language, expressions are divided into THREE types. They are as follows...

 Infix Expression

 Postfix Expression

 Prefix Expression

 The above classification is based on the operator position in the expression.

Expression Types in C
76

 Infix Expression

 The expression in which the operator is used between operands is called infix expression.

 The infix expression has the following general structure.

Operand1 Operator Operand2

Example

77

 Postfix Expression

 The expression in which the operator is used after operands is called postfix expression.

 The postfix expression has the following general structure.

Operand1 Operand2 Operator

 Example

78

 Prefix Expression

 The expression in which the operator is used before operands is called a prefix expression.

 The prefix expression has the following general structure.

 Operator Operand1 Operand2

 Example

Expression Evaluation
79

 In the C programming language, an expression is evaluated based on the operator precedence and
associativity. When there are multiple operators in an expression, they are evaluated according to
their precedence and associativity. The operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

 To understand expression evaluation in c, let us consider the following simple example expression...

10 + 4 * 3 / 2

 In the above expression, there are three operators +, * and /. Among these three operators, both
multiplication and division have the same higher precedence and addition has lower precedence.
So, according to the operator precedence both multiplication and division are evaluated first and
then the addition is evaluated. As multiplication and division have the same precedence they are
evaluated based on the associativity. Here, the associativity of multiplication and division is left to
right. So, multiplication is performed first, then division and finally addition. So, the above
expression is evaluated in the order of * / and +. It is evaluated as follows...

4 * 3 ====> 12

12 / 2 ===> 6

10 + 6 ===> 16

 The expression is evaluated to 16.

Operator Precedence and Associativity
80

 Operator precedence is used to determine the order of operators
evaluated in an expression. In c programming language every operator
has precedence (priority). When there is more than one operator in an
expression the operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

 Operator associativity is used to determine the order of operators with
equal precedence evaluated in an expression. In the c programming
language, when an expression contains multiple operators with equal
precedence, we use associativity to determine the order of evaluation of
those operators.

 In c programming language the operator precedence and associativity are
as shown in the following table.

81

Library Functions
82

 The standard functions are built-in functions. In C programming language, the standard

functions are declared in header files. The standard functions are also called as library

functions or pre-defined functions.

 In C when we use standard functions, we must include the respective header file using

#include statement. For example, the function printf() is defined in header file stdio.h

(Standard Input Output header file). When we use printf() in our program, we must

include stdio.h header file using #include<stdio.h> statement.

 The C standard library provides macros, type definitions and functions for tasks such as

string handling, mathematical computations, input/output processing, memory

management, and several other operating system services.

 C Programming Language provides the following header files with standard functions.

83

Header File Purpose Example Functions

stdio.h Provides functions to perform standard I/O operations printf(), scanf()

conio.h Provides functions to perform console I/O operations clrscr(), getch()

math.h Provides functions to perform mathematical operations sqrt(), pow()

string.h Provides functions to handle string data values strlen(), strcpy()

stdlib.h Provides functions to perform general functions/td> calloc(), malloc()

time.h Provides functions to perform operations on time and date time(), localtime()

ctype.h Provides functions to perform - testing and mapping of character data values isalpha(), islower()

setjmp.h Provides functions that are used in function calls setjump(), longjump()

signal.h Provides functions to handle signals during program execution signal(), raise()

assert.h Provides Macro that is used to verify assumptions made by the program assert()

locale.h Defines the location specific settings such as date formats and currency symbols setlocale()

stdarg.h Used to get the arguments in a function if the arguments are not specified by the function va_start(), va_end()

errno.h Provides macros to handle the system calls Error, errno

graphics.h Provides functions to draw graphics. circle(), rectangle()

float.h Provides constants related to floating point data values

stddef.h Defines various variable types

limits.h Defines the maximum and minimum values of various variable types like char, int and long

84

85

86

87

88

89

DATA INPUT AND OUTPUT FUNCTIONS

- III Bsc Maths

Dr P.V. Praveen Sundar,

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

03-01-2022

Data Input and Output functions
91

 C programming language provides many built-in functions to read any given input
and to display data on screen when there is a need to output the result. All these
built-in functions are present in C header files.

 The c programming language provides the following basic built-in input functions.

 getchar() and putchar()

 getch() and putch()

 getche()

 getc() and putc()

 gets() and puts()

 scanf() and printf()

 fscanf() and fprintf()

getchar()
92

 The getchar() function is used to read a character from the keyboard

and return it to the program.

 This function is used to read a single character. To read multiple

characters we need to write multiple times or use a looping statement.

 Syntax of getchar()

 The function does not have any parameters. However, it returns the read

characters as an unsigned char in an int.

int getchar(void)

putchar()
93

 The putchar(int char) method in C is used to write a character, of
unsigned char type, to stdout. This character is passed as the
parameter to this method.

Syntax:

 Parameters: This method accepts a mandatory parameter char
which is the character to be written to stdout.

 Return Value: This function returns the character written on the
stdout as an unsigned char. It also returns EOF when some error
occurs.

int putchar(int char)

94

95

getch() and putch()
96

 getch() is a nonstandard function and is present in conio.h header file which
is mostly used by MS-DOS compilers like Turbo C.

 Like these functions, getch() also reads a single character from the
keyboard. But it does not use any buffer, so the entered character is
immediately returned without waiting for the enter key.

 Syntax:

 Parameters: This method does not accept any parameters.

 Return value: This method returns the ASCII value of the key pressed.

 The putch() function is used for printing character to a screen at current
cursor location. It is unformatted character output functions. It is defined in
header file conio.h.

int getch(void);

97

98

getche()
99

 Like getch(), getche() is also character input functions.

 It is unformatted input function meaning it does not allow user

to read input in their format.

 Difference between getch() and getche() is that getche() echoes

pressed character.

 getche() also returns character pressed like getch(). It is also

defined in header file conio.h.

int getche(void);

100

101

getc and putc()
102

 int getc(FILE *stream) gets the next character (an unsigned char) from the
specified stream and advances the position indicator for the stream.

 Syntax getc() function.

 Parameters

stream − This is the pointer to a FILE object that identifies the stream on which the
operation is to be performed.

 Return Value

This function returns the character read as an unsigned char cast to an int or EOF on
end of file or error.

int getc(FILE *stream)

103

104

gets() and puts()
105

 The C library function char *gets(char *str) reads a line from stdin and
stores it into the string pointed to by str. It stops when either the newline
character is read or when the end-of-file is reached, whichever comes first.

 Syntax of gets() function.

 Parameters

str − This is the pointer to an array of chars where the C string is stored.

 Return Value

This function returns str on success, and NULL on error or when end of file occurs,
while no characters have been read.

char *gets(char *str)

106

 The C library function int puts(const char *str) writes a string to stdout up to
but not including the null character. A newline character is appended to the
output.

 Syntax of puts() function.

Parameters

str − This is the C string to be written.

Return Value

If successful, non-negative value is returned. On error, the function returns EOF.

int puts(const char *str)

107

108

scanf()
109

 The scanf() stands for Scan formatting and is used to read formatted data
from keyboard.

 The scanf() function is used to read multiple data values of different data
types from the keyboard.

 The scanf() function is built-in function defined in a header file called
"stdio.h".

 When we want to use scanf() function in our program, we need to include
the respective header file (stdio.h) using #include statement.

 The scanf() function has the following syntax...

Syntax:

scanf("format strings",&variableNames);

110

 The format specifiers are used in C for input and output purposes. Using this

concept the compiler can understand that what type of data is in a variable

during taking input using the scanf() function and printing using printf() function.

Here is a list of format specifiers.

Format Specifier Type

%c Character

%d Signed integer

%e or %E Scientific notation of floats

%f Float values

%g or %G Similar as %e or %E

%hi Signed integer (short)

%hu Unsigned Integer (short)

111

Format Specifier Type

%i Unsigned integer

%l or %ld or %li Long

%lf Double

%Lf Long double

%lu Unsigned int or unsigned long

%lli or %lld Long long

%llu Unsigned long long

%o Octal representation

%p Pointer

%s String

%u Unsigned int

%x or %X Hexadecimal representation

%n Prints nothing

%% Prints % character

112

113

printf()
114

 printf() stands for print formatting and is used to display information
required by the user and also prints the values of the variables.

 Syntax:

printf(“format_string”, var1, var2, var3, …, varN);

 Where format_string may contain :

 Characters that are simply printed as they are.

 Format specifier that begin with a % sign.

 Escape sequences that begin with \ sign.

 The format string indicates how many arguments follow and what their
types are. The arguments var1, var2, …, varN are the variables whose
values are formatted and printed according to format specifications of the
format string. The arguments must match in number, order and type with
the format specifications.

CONTROL STATEMENTS IN C

III BSc Mathematics

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

10-01-2022

Control Statements
116

 The control statements are used to control the flow of execution of the

program.

 If we want to execute a specific block of instructions only when a certain

condition is true, then control statements are useful.

 If we want to execute a block repeatedly, then loops are useful.

 C classifies these control statements into two categories

 Conditional execution

 Unconditional execution

117

Unconditional

JumpIterationSelection

Conditional

If-else If-else-if switch

for
Do-

while
while

breakif continue goto returnthrow

Simple if
118

 Simple if statement is used to verify the given condition and executes the

block of statements based on the condition result.

 The simple if statement evaluates specified condition.

 If it is greater than 1, it executes the next statement or block of statements.

 If the condition is 0, it skips the execution of the next statement or block of

statements.

 Simple if statement is used when we have only one option that is executed or

skipped based on a condition.

 The general syntax and execution flow of the simple if statement is as follows.

119

120

121

122

If-else statement
123

 The if-else statement is used to verify the given condition and executes only

one out of the two blocks of statements based on the condition result.

 The if-else statement evaluates the specified condition.

 If it is greater than 1, it executes a block of statements (True block).

 If the condition is 0, it executes another block of statements (False block).

 The if-else statement is used when we have two options and only one

option has to be executed based on a condition result (TRUE or FALSE).

 The general syntax and execution flow of the if-else statement is as

follows.

124

125

126

127

128

129

130

Nested if statement
131

 Writing a if statement inside another if statement is called nested if statement.

 The nested if statement can be defined using any combination of simple if & if-else

statements.

 The general syntax of the nested if statement is as follows...

132

133

134

135

136

137

138

if...else if...else statement
139

 The if-else-if ladder statement executes one condition from multiple

statements. The execution starts from top and checked for each if condition.

 We can use multiple else if blocks to add multiple conditions but it requires

at least one if block at the beginning, we can't directly write else and else

if statements without having any if block.

 The statement of if block will be executed which evaluates to be true. If

none of the if condition evaluates to be true then the last else block is

evaluated.

 The general syntax of the if-else-if statement is as follows...

140

141

142

143

144

145

146

147

148

149

150

Switch Statement
151

 In C, Switch statement is a multiway branch statement.

 It provides an efficient way to transfer the execution to different parts of a code
based on the value of the expression.

 The switch expression is of integer type such as int, char, or short, or of an
enumeration type, or of string type.

 The expression is checked for different cases and the one match is executed.

 The switch statement is often used as an alternative to an if-else construct if a single
expression is tested against three or more conditions.

 When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, then it will raise a
compile time error.

152

 In C, duplicate case values are not allowed.

 The data type of the variable in the switch and value of a case must be

of the same type.

 The value of a case must be a constant or a literal. Variables are not

allowed.

 The break in switch statement is used to terminate the current sequence.

 The default statement is optional and it can be used anywhere inside the

switch statement.

 Multiple default statements are not allowed.

153

154

155

156

157

158

159

160

161

Iteration Statements
162

 Iteration statements or Loops are used in programming to
repeatedly execute a certain block of statements until some
condition is met.

 The following statements repeatedly execute a statement or a
block of statements:

 The for statement: executes its body while a specified Boolean
expression evaluates to true.

 The do statement: conditionally executes its body one or more times.

 The while statement: conditionally executes its body zero or more times.

 At any point within the body of an iteration statement, you can
break out of the loop by using the break statement, or step to the
next iteration in the loop by using the continue statement.

while loop
163

 C provides the while loop to repeatedly execute a block of code as long as the

specified condition returns false.

 The while loop starts with the while keyword, and it must include a conditional

expression inside brackets that returns either true or false.

 It executes the code block until the specified conditional expression returns 0.

 In a while loop, initialization should be done before the loop starts, and increment or

decrement steps should be inside the loop.

 The statement(s) inside the while loop may be a single statement or a block of

statements.

 The key point of the while loop is that the loop might not ever run. When the

condition is tested and the result is false, the loop body is skipped and the first

statement after the while loop is executed.

164

165

166

167

do while Statement
168

 The do while loop is the same as while loop except that it executes the code block at
least once.

 The do-while loop starts with the do keyword followed by a code block and a
conditional expression with the while keyword.

 The do while loop stops execution exits when a condition evaluates to false. Because
the while(condition) specified at the end of the block, it certainly executes the code
block at least once.

 In a while loop, initialization should be done before the loop starts, and increment or
decrement steps should be inside the loop.

 The statement(s) inside the while loop may be a single statement or a block of
statements.

 The key point of the do while loop is that the loop will executed at least once, even
on the first time When the condition is tested and the result is false.

 This is the reason, do while is called as exit controlled loop.

169

170

171

172

for loop
173

 A for loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times.

 for loop has three statements: initialization, condition and iterator.

 The initialization statement is executed at first and only once. Here, the variable
is usually declared and initialized.

 Then, the condition is evaluated. The condition is a Boolean expression, i.e. it
returns either true or false.

 If the condition is evaluated to true:
◼ The body of the loop, which must be a statement or a block of statements.

◼ Then, the iterator statement is executed which usually changes the value of the initialized
variable.

◼ Again the condition is evaluated.

◼ The process continues until the condition is evaluated to false.

 If the condition is evaluated to false, the for loop terminates.

174

 The iterator section can contain zero or more of the following statement

expressions, separated by commas:

 prefix or postfix increment expression, such as ++i or i++

 prefix or postfix decrement expression, such as --i or i--

 assignment

 invocation of a method

 All the sections of the for statement are optional.

175

176

177

178

break Statements
179

Break (breaks the loop/switch)

 Break statement is used to terminate the current loop iteration or terminate
the switch statement in which it appears.

 When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next statement
following the loop.

 Break statement can be used in the following scenarios:

 for loop (For loop & nested for loop.

 While (while loop & nested while loop).

 Do while (do while loop and nested while loop)

 Switch case (Switch cases and nested switch cases)

180

181

182

Continue Statements
183

 A Continue statement jumps out of the current loop condition and jumps

back to the starting of the loop code.

 It is represented by continue;

 Continue statement can be used in the following scenarios:

 for loop (For loop & nested for loop.

 While (while loop & nested while loop).

 Do while (do while loop and nested while loop)

 Switch case (Switch cases and nested switch cases)

184

185

186

goto statement
187

 The goto statement transfers the program control directly to a labeled

statement.

 The label is the valid identifier and placed just before the statement

from where the control is transferred.

 A common use of goto is to transfer control to a specific switch-case

label or the default label in a switch statement.

 The goto statement is also useful to get out of deeply nested loops.

188

189

190

ARRAYS IN C

III Bsc Mathematics

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

20-01-2022

Arrays-Introduction
192

 The variables are used to store data. These variables are the one of the basic building

blocks in C.

 A single variable is used to store a single value that can be used anywhere in the

memory.

 In some situations, we need to store multiple values of the same type. In that case, it

needs multiple variables of the same data type. All the values are stored randomly

anywhere in the memory.

 For example, to store the roll numbers of the 100 students, it needs 100 variables

named as roll1, roll2, roll3,…….roll100 . It becomes very difficult to declare 100

variables and store all the roll numbers.

 In C, the concept of Array helps to store multiple values in a single variable.

 An array is also a derived data type in C.

Arrays
193

 “An array is a collection of variables of the same type that are referenced by a
common name”.

 In an array, the values are stored in a fixed number of elements of the same type
sequentially in memory. Therefore, an integer array holds a sequence of integers; a
character array holds a sequence of characters, and so on.

 Types of Array

 Single Dimensional Array

 Two Dimensional Array

 Multi Dimensional Array

 A one dimensional array represents values that are stored in a single row or in a
single column.

194

 Syntax

 Where, data_type declares the basic type of the array, which is the type of each
element in the array.

 array_name specifies the name with which the array will be referenced.

 array_size defines how many elements the array will hold. Size should be specified with
square brackets [].

Example:

int num[10];

 In the above declaration, an array named “num” is declared with 10 elements
(memory space to store 10 different values) as integer type. To the above
declaration, the compiler allocated 10 memory locations (boxes) in the common
name “num”.

<data type><array_name> [<array_size>];

195

 Each element (Memory box) has a unique index number starting from 0 which is
known as “subscript”.

 The subscript always starts with 0 and it should be an unsigned integer value.

 Each element of an array is referred by its name with subscript index within the
square bracket.

 For example, num[3] refers to the 4th element in the array.

196

 Some more array declarations with various data types:

char emp_name[25]; // character array named emp_name with size 25

float salary[20]; // floating-point array named salary with size 20

int a[5], b[10], c[15]; // multiple arrays are declared of type int.

 The amount of storage required to hold an array is directly related with type

and size.

Initialization

 An array can be initialized at the time of its declaration. Unless an array is

initialized, all the array elements contain garbage values.

197

 While declaring and initializing values in
an array, the values should be given within
the curly braces ie. { ….. }

 The size of an array may be optional when
the array is initialized during declaration.

Example:
int age[]={ 19,21,16,1,50};

 In the above initialization, the size of the
array is not specified directly in the
declaration with initialization. So, the size is
determined by compiler which depends on
the total number of values. In this case, the
size of the array is five.

198

199

Accepting values to an array during run time :

 Multiple assignment statements are required to insert values to the

cells of the array during runtime. The for loop is ideally suited for

iterating through the array elements.

 In the following program, a for loop has been constructed to execute

the statements within the loop for 5 times.

 During each iteration of the loop, cout statement prompts you to

“Enter value …….” and cin gets the value and stores it in num[i];

200

201

202

Accessing array elements

 Array elements can be used anywhere in a program as we do in case of a
normal variable.

 The elements of an array are accessed with the array name followed by the
subscript index within the square bracket.

Example:

cout<<num[3];

 In the above statement, num[3] refers to the 4th element of the array and cout
statement displays the value of num[3].

 The subscript in bracket can be a variable, a constant or an expression that
evaluates to an integer.

203

204

Two-dimensional array

 Two-dimensional (2D) arrays

are collection of similar

elements where the elements

are stored in certain number of

rows and columns.

 An example m × n matrix

where m denotes the number of

rows and n denotes the number

of columns.

int arr[3][3];

205

206

 The declaration of a 2-D array is

data-type array_name[row-size][col-size];

 In the above declaration, data-type refers to any valid C data-type, array_name

refers to the name of the 2-D array, row-size refers to the number of rows and col-

size refers to the number of columns in the 2-D array.

For example

int A[3][4];

 In the above example, A is a 2-D array, 3 denotes the number of rows and 4

denotes the number of columns. This array can hold a maximum of 12 elements.

 Array size must be an unsigned integer value which is greater than 0. In arrays,

column size is compulsory but row size is optional.

207

208

209

210

211

212

213

214

215

Advantages of an Array in C:

 Random access of elements using array index.

 Use of less line of code as it creates a single array of multiple elements.

 Easy access to all the elements.

 Traversal through the array becomes easy using a single loop.

 Sorting becomes easy as it can be accomplished by writing less line of code.

Disadvantages of an Array in C:

 Allows a fixed number of elements to be entered which is decided at the time of
declaration. Unlike a linked list, an array in C is not dynamic.

 Insertion and deletion of elements can be costly since the elements are needed to be
managed in accordance with the new memory allocation.

Multidimensional Arrays
216

 In C, a 3d array is a multidimensional array used to store 3-dimensional information.

 In simple words, a three-dimensional array is an array of arrays.

 In three dimensional array, we have three rows and three columns.

 In multidimensional arrays data in the form of a table, that is in row-major order.

 The general syntax of a 3-dimensional array is as below.

data_type array_name[size1][size2][size3];

Example

int 3DArray[2][3][4];

 where,3DArray is a three-dimensional array, having a maximum of 24 elements.

217

218

219

220

Program Exercise
221

1. To Calculate the sum of positive numbers in an array.

2. To count the number of odd and even numbers in an array.

3. To perform Matrix Addition and Matrix Subtraction

222

223

224

225

226

227

228

229

FUNCTIONS IN C

III Bsc Mathematics

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

24-01-2022

Functions
231

 A function is a group of statements that together perform a task.

 For example, Let’s consider you are writing a large C program and, in that

program you want to do a particular task several number of times, like

displaying value from 1 to 10, in order to do that you have to write few

lines of code and you need to repeat these lines every time you display

values.

 Another way of doing this is that you write these lines inside a function and

call that function every time you want to display values. This would make

you code simple, readable and reusable.

232

 A large program can typically be split into small sub-programs (blocks) called as functions

where each sub-program can perform some specific functionality.

 Functions reduce the size and complexity of a program, makes it easier to understand, test,

and check for errors.

 The functions which are available by default known as “Built-in” functions and user can

create their own functions known as “User-defined” functions.

 To reduce size and complexity of the program we use Functions. The programmers can make

use of sub programs either writing their own functions or calling them from standard library.

 Few lines of code may be repeatedly used in different contexts. Duplication of the same

code can be eliminated by using functions which improves the maintenance and reduce

program size.

 Some functions can be called multiple times with different inputs.

233

 Every C program has at least one function, which is main(), and all the most

trivial programs can define additional functions.

 You can divide up your code into separate functions. How you divide up your

code among different functions is up to you, but logically the division usually is

such that each function performs a specific task.

 Syntax of Function
return_type function_name (parameter_list)

{

//C++ Statements

}

Types of Function
234

 C++ Supports two types of function.

 Built in Functions

 User Defined Functions

235

 Built-in functions are also known as library functions.

 Functions such as puts(), gets(), printf(), scanf() etc are standard library functions.

These functions are already defined in header files (files with .h extensions are

called header files such as stdio.h), so we just call them whenever there is a need to

use them.

 For example, printf() function is defined in <stdio.h> header file so in order to use

the printf() function, we need to include the <stdio.h> header file in our program

using #include <stdio.h>.

User Defined Functions
236

 User Defined Functions: The functions that we declare and write in our

programs are user-defined functions.

Function Declaration
237

 A function declaration tells the compiler about a function name and how to

call the function. The actual body of the function can be defined separately.

 A function declaration has the following parts −

return_type function_name(parameter list);

 For the above defined function max(), following is the function declaration −

int max(int, int);

 Parameter names are not important in function declaration only their type is

required, so following is also valid declaration

238

239

240

241

Function Definition
242

 A Function Definition provides the actual body of the function.

 The general form of a C function definition is as follows −

return_type function_name(parameter list)

{

body of the function

}

243

 A C function definition consists of a function header and a function body. Here are all the

parts of a function

 Return Type − A function may return a value. The return_type is the data type of the

value the function returns. Some functions perform the desired operations without

returning a value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a

value to the parameter. This value is referred to as actual parameter or argument. The

parameter list refers to the type, order, and number of the parameters of a function.

Parameters are optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what

the function does.

244

Calling a Function
245

 While creating a C function, you give a definition of what the function has to

do. To use a function, you will have to call or invoke that function.

 When a program calls a function, program control is transferred to the called

function. A called function performs defined task and when it’s return

statement is executed or when its function-ending closing brace is reached, it

returns program control back to the main program.

 To call a function, you simply need to pass the required parameters along

with function name, and if function returns a value, then you can store returned

value.

Function Arguments
246

 If a function is to use arguments, it must declare variables that accept

the values of the arguments. These variables are called the formal

parameters of the function.

 The formal parameters behave like other local variables inside the

function and are created upon entry into the function and destroyed

upon exit.

 While calling a function, there are two ways that arguments can be

passed to a function −

 Call by Value

 Call by Reference

247

 Call by Value : This method copies the actual value of an argument into

the formal parameter of the function. In this case, changes made to the

parameter inside the function have no effect on the argument.

 Call by Reference: This method copies the reference of an argument

into the formal parameter. Inside the function, the reference is used to

access the actual argument used in the call. This means that changes

made to the parameter affect the argument.

Call by Value
248

 The call by value method of passing arguments to a function copies the

actual value of an argument into the formal parameter of the function.

In this case, changes made to the parameter inside the function have no

effect on the argument.

 By default, C uses call by value to pass arguments. In general, this

means that code within a function cannot alter the arguments used to call

the function.

249

250

Call by Reference
251

 The call by reference method of passing arguments to a function copies

the reference of an argument into the formal parameter.

 Inside the function, the reference is used to access the actual argument

used in the call. This means that changes made to the parameter affect

the passed argument.

 To pass the value by reference, argument reference is passed to the

functions just like any other value. So accordingly you need to declare

the function parameters as reference types as in the following function

swap(), which exchanges the values of the two integer variables pointed

to by its arguments.

252

253

Types of Function
254

 A function depending upon the arguments present or not and whether a value

is returned or not , maybe classified as

 Function with no arguments and no return values.

 Function with no arguments and having return values.

 Function with arguments and no return values.

 Function with arguments and having return values.

Function with no arguments and no return values
255

 When a function has no arguments, it does not receive any data from the calling function,

similarly when a function has no return values, the calling function does not receive any data

from the called function.

 Hence, there is no data transfer between the calling function and the called function.

 Those functions are used to perform any operation, they read the input and display the output

in same block.

 In the following example, main() is the calling function which calls the function add().

 The function add() receives it data directly from keyboard and displays the output directly to

the screen in the function itself, so there is no need of return statement.

 The closing brace of the function indicates the end of the execution of the function, thus

returning the control back to the calling function.

 The keyword void is used before the function add() to indicate that there are no return values.

256

257

Function with no argument and having return values
258

 When a function has no arguments, it does not receive any data from the calling

function, but it can do some process and then return the result to the called function.

Hence, there is data transfer between the calling function and the called function.

 In the below program, main() is the calling function which calls the function add().

 The function add() contains no arguments and receives it data directly from

keyboard.

 The return statement is employed in this function to return the sum of given two

numbers calculated and the result is displayed from the main() to the standard

output device.

 The keyword int is used before the function add() to indicate that it returns a value

of type int to the called function.

259

260

Function with arguments but no return value
261

 When a function has arguments, it receive any data from the calling
function but it returns no values.

 In the below program, main() is the calling function which calls the function
add().

 The function receives two arguments of type int from the calling function
(main()) after calculating the sum of two numbers, it displays the output
directly to the screen in the function itself, so there is no need of return
statement.

 The closing brace of the function indicates the end of the execution of
the function, thus returning the control back to the calling function.

 The keyword void is used before the function add() to indicate that there
are no return values.

262

263

Function with arguments and return value
264

 Function with arguments and return value means both the calling function and

called function will receive data from each other. It’s like a dual

communication.

 In the below program, main() is the calling function which calls the function

add().

 The function receives two arguments of type int from the calling function

(main()) after calculating the sum of two numbers, The return statement is

employed in this function to return the sum of given two numbers calculated

and the result is displayed from the main() to the standard output device.

 The keyword int is used before the function add() to indicate that it returns a

value of type int to the called function.

265

266

Constant Arguments
267

 The constant variable can be declared using const keyword.

 The const keyword makes variable value stable.

 The constant variable should be initialized while declaring.

 The const modifier enables to assign an initial value to a variable
that cannot be changed later inside the body of the function.

Syntax :

<returntype><functionname> (const <datatype variable=value>)

Example:

int minimum(const int a=10);

float area(const float pi=3.14, int r=5);

268

269

270

