PROGRAMMING IN C

Dr P.V. Praveen Sundar,

Assistant Professor,

Department of Computer Science
Adhiparasakthi College of Arts & Science,
Kalavai.

06-12-2021 - [l BSC Mathematics

Introduction
2 P

0 C is a general-purpose, high-level language that was originally developed by
Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. C was
originally first implemented on the DEC PDP-11 computer in 1972.

0 In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K&R standard.

0 The UNIX operating system, the C compiler, and essentially all UNIX application
programs have been written in C.

0 C has now become a widely used professional language for various reasons —
O Easy to learn

Structured language

It produces efficient programs

It can handle low-level activities

It can be compiled on a variety of computer platforms.

Facts about C

C was invented to write an operating system called UNIX.
0 C is a successor of B language which was introduced around the early

1970s.

0 The language was formalized in 1988 by the American National Standard
Institute (ANSI).

The UNIX OS was totally written in C.

Today C is the most widely used and popular System Programming
Language.

Most of the state-of-the-art software have been implemented using C.
Today's most popular Linux OS and MySQL have been written in C.

Origin of C

Algol 1960 International Group
BCPL 1967 Martin Richard
B 1970 Ken Thompson
Traditional C 1972 Dennis Ritchie

K&RC 1978 Kernighan & Dennis Ritchie

ANSIC 1989 ANSI Committee

ANSI/ISOC 1990 ISO Committee

C99 1999 Standardization Committee

Features
s

C is the widely used language. It provides many features that are given below.
Simple

Machine Independent or Portable

Mid-level programming language

Structured programming language

Rich Library

Memory Management

Fast Speed

Pointers

Recursion

O O O o o 0o o o 0o O

Extensible

C Program Basics

C is a structured
programming

language. Every
¢ program and
its statements
must be in a

particular
structure. Every
c program has
the following
general
structure...

it is oplonal. Generally used to provice description about the program

* * [
/ comments / N It is oplonal. Gewerally used to inelude header files, define constants and enum
preprocessing commands<

global declarations;<~

int main ()
{ main is a user defined functlon and it is compulsory statement.
It bndicates the starting polnt of program execution.
without main compiler does wot wnderstand from which statement execusion starts

It is opional. Used to declare the variables that ae common for multiple functions

local declarations;
executable statements;

Local declaration and executable statements are written according to our requirment

return 0;
}

userdefined function ()<
() " it s oplonal. Used to provide bmplementation for user defined functions that already
{ declaved either at global or Local declaration part.

function definition;

A

0 Line 1: Comments - They are ignored by the compiler

0 This section is used to provide a small description of the
program. The comment lines are simply ignored by the
compiler, that means they are not executed. In C, there are
two types of comments.

O Single Line Comments: Single line comment begins with // symbol.
We can write any number of single line comments.

O Multiple Lines Comments: Multiple lines comment begins with /*
symbol and ends with */. We can write any number of multiple
lines comments in a program.

0 In a C program, the comment lines are optional. Based on the requirement,
we write comments. All the comment lines in a C program just provide the
guidelines to understand the program and its code.

Line 2: Preprocessing Commands

Preprocessing commands are used to include header files and to define
constants. We use the #include statement to include the header file into our
program. We use a #define statement to define a constant. The
preprocessing statements are used according to the requirements. If we
don't need any header file, then no need to write #include statement. If we
don't need any constant, then no need to write a #define statement.

Line 3: Global Declaration

0 The global declaration is used to define the global variables, which are
common for all the functions after its declaration. We also use the global
declaration to declare functions. This global declaration is used based on
the requirement.

Line 4: int main()

0 Every C program must write this statement. This statement (main) specifies
the starting point of the C program execution. Here, main is a user-defined
method which tells the compiler that this is the starting point of the
program execution. Here, int is a data type of a value that is going to
return to the Operating System after completing the main method
execution. If we don't want to return any value, we can use it as void.

oo §
Line 5: Open Brace ({)

0 The open brace indicates the beginning of the block which belongs to the main
method. In C program, every block begins with a '{' symbol.

Line 6: Local Declaration

0 In this section, we declare the variables and functions that are local to the function or
block in which they are declared. The variables which are declared in this section
are valid only within the function or block in which they are declared.

Line 7: Executable statements

0 In this section, we write the statements which perform tasks like reading datq,
displaying the result, calculations, etc., All the statements in this section are written
according to the requirements.

Line 8: Return Statement

0 Return Statement will returns the value to the operating system.

T
Line 9: Closing Brace (})

0 The close brace indicates the end of the block which belongs to the
main method. In C program every block ends with a '} symbol.

Line 10, 11, 12, ...: User-defined function()

0 This is the place where we implement the user-defined functions. The
user-defined function implementation can also be performed
before the main method. In this case, the user-defined function need
not be declared. Directly it can be implemented, but it must be
before the main method. In a program, we can define as many
user-defined functions as we want. Every user-defined function
needs a function call to execute its statements.

_ 12
General rules for any C program

[
[

Every executable statement must end with a semicolon symbol (;).

Every C program must contain exactly one main method (Starting
point of the program execution).

All the system-defined words (keywords) must be used in lowercase
letters.

Keywords can not be used as user-defined names(identifiers).
For every open brace ({), there must be respective closing brace (}).
Every variable must be declared before it is used.

C Character Set

0 As every language contains a set of characters used to construct words,
statements, etc., C language also has a set of characters that include
alphabets, digits, and special symbols. C language supports a total of 256
characters.

0 Every C program contains statements. These statements are constructed
using words and these words are constructed using characters from the C
character set. C language character set contains the following set of
characters.

O Alphabets
O Digits
O Special Symbols

.. 4
Alphabets

0 C language supports all the alphabets from the English language. Lower and upper case letters
together support 52 alphabets.

0 lower case letters - a to z
o0 UPPER CASE LETTERS - Ato Z

Digits

0 Clanguage supports 10 digits which are used to construct numerical values in C language.
o Digits-0,1,2,3,4,5,6,7,8,9

Special Symbols

o C language supports a rich set of special symbols that include symbols to perform
mathematical operations, to check conditions, white spaces, backspaces, and other special
symbols.

O Special Symbols -~ @ # $% & *()_-+={}[1;:'""/2.>,<)\ | tab newline space NULL
bell backspace vertical tab etc.,

These agre Control Characters These are Printable characters
AsSCIl Value Character Meaning ASCIl Value Character ASCII Value Character ASCII Vvalue Character

0 MNMULL null 32 Space 643 () g6

1 SOH Start of header 33 ! 65 A = a
2 STX start of text 34 53 66 B 98 b
3 ETX end of text 35 H 67 iC 99 C
a EOT end of transaction 26 % 68 D 100 o
5 ENG enquiry 37 3o 69 E 101 e
6 ACK acknowledgement 38 70 F 102 f
7T BEL bell 39 Ti o 103 E
8 BS back Space 40 { 72 H 104 h
9 HT Horizontal Tab 41] 73 i 105 i
10 LF Line Feed 42 = T4 1 106 j
11 WT Vertical Tab 43 - 75 K 107 k
12 FF Form Feed 44 . 76 L 108 I
i3 CR Carriage Return 45 - TT M 109 m
14 SO Shift Out 46 - 7a !] 110 n
15 | Shift Im a7y / 79 0 111 O
16 DLE Data Link Escape 48 0 80 P 112 p
i7 DC1 Dewvice Control 1 49 1 21 Q 113 q
18 DC2 Dewvice Control 2 S0 2 82 R 114 r
19 DC3 Dewvice Control 3 51 3 83 S 115
20 DCa Dewvice Control 4 52 q 84 T 116 t
21 MLAK MNegative Acknowledgement 53 5 85 ¥ 117 L
22 SYIN Synchronous Idle 54 6 86 W 118 W
23 ETHB End of Trans Block 55 L 87 W 119 W
24 CAMN Cancel 56 8 88 b 120 »
25 EM End of Mediium 57 o 89 Y 121 Y
26 SUB Sunstitute 58 - 90 Zz 122 z
27 ESC Escape 59 - 91 [123 1
28 Fs File Separator 60 < g2 \ 124 |
29 GSs Group Separator 61 = 93 | 125 ¥
30 RS Record Separator 62 = 94 A 126 ==
31 us Unit Separator 63 e a5 — 127 DEL

Creating and Running C Program
.. A4

0 Generally, the programs created using programming languages like C, C++, Javaq, etc,,
are written using a high-level language like English. But, the computer cannot understand
the high-level language. It can understand only low-level language. So, the program
written in the high-level language needs to be converted into the low-level language to
make it understandable for the computer. This conversion is performed using either
Interpreter or Compiler.

0 Popular programming languages like C, C++, Java, etc., use the compiler to convert
high-level language instructions into low-level language instructions.

0 A compiler is a program that converts high-level language instructions into low-level
language instructions. Generally, the compiler performs two things, first it verifies the
program errors, if errors are found, it returns a list of errors otherwise it converts the
complete code into the low-level language.

A EEE———————————————————,

Step Crecte Source Code Write program in the Ediﬁ’ror &
save it with .c extension
Step Compile Source Code Press Alt + F9 to compile
Step Run Executable Code Press Ctrl + FQ to run
Press
S‘tep 4 Check Result Alt + F5
to open UserScreen

s
Step 1: Creating a Source Code

0 Source code is a file with C programming instructions in a high-level language. To
create source code, we use any text editor to write the program instructions. The
instructions written in the source code must follow the C programming language rules.
The following steps are used to create a source code file in Windows OS...

o Click on the Start button

Select Run

Type cmd and press Enter

Type cd c:\TC\bin in the command prompt and press Enter
Type TC press Enter

Click on File -> New in C Editor window

Type the program

Save it as FileName.c (Use shortcut key F2 to save)

I I
Step 2: Compile Source Code (Alt + F9)

0 The compilation is the process of converting high-level language instructions into low-
level language instructions. We use the shortcut key Alt + F9 to compile a C
program in Turbo C.

0 The compilation is the process of converting high-level language instructions into low-
level language instructions.

0 Whenever we press Alt + F9, the source file is going to be submitted to the
Compiler. On receiving a source file, the compiler first checks for the Errors. If there
are any Errors then compiler returns List of Errors, if there are no errors then the
source code is converted into object code and stores it as a file with .obj extension.
Then the object code is given to the Linker. The Linker combines both the object code
and specified header file code and generates an Executable file with a .exe
extension.

_ 20 y
Step 3: Executing / Running Executable File (Ctrl + F9)

0 After completing compilation successfully, an executable file is created with
a .exe extension. The processor can understand this .exe file content so that
it can perform the task specified in the source file.

0 We use a shortcut key Ctrl + F9 to run a C program. Whenever we press
Ctrl + F9, the .exe file is submitted to the CPU. On receiving .exe file, CPU
performs the task according to the instruction written in the file. The result
generated from the execution is placed in a window called User Screen.

Step 4: Check Result (Alt + F5)

0 After running the program, the result is placed into User Screen. Just we
need to open the User Screen to check the result of the program execution.

We use the shortcut key Alt + F5 to open the User Screen and check the
result.

Execution Process of a C Program

21
Source File Compiler Object File Linker Executable File Processor User Screen
Al +F? '....'Mt-l-FE .
------ 0 m-
Sample.c Output
T If thara ara Eooros

List of Errors

Header Files

Compilation

Overall Process

0 Type the program in C editor and save with .c extension (Press F2 to save).
0 Press Alt + F9 to compile the program.

0 If there are errors, correct the errors and recompile the program.

0 If there are no errors, then press Ctrl + F9 to execute /run the program.

0 Press Alt + F5 to open User Screen and check the result.

C Tokens

0 Every C program is a collection of instructions and every instruction is a collection of
some individual units. Every smallest individual unit of a ¢ program is called token.
Every instruction in a ¢ program is a collection of tokens. Tokens are used to construct
c programs and they are said to the basic building blocks of a ¢ program.

0 In a c program tokens may contain the following...

Keywords
|dentifiers
Operators
Special Symbols
Constants
Strings

Data values

O In a C program, a collection of all the keywords, identifiers, operators, special
symbols, constants, strings, and data values are called tokens.

Consider the following C program...
Hinclude<stdio.h>
#Hinclude<conio.h>
int main() {
int i;
clrscr();
printf("ASCll ==> Character\n");
for(i=-128;i<=127; i++)
printf("%d ==> %c\n", i, i);
getch();

return O;

C Keywords
.2 45

0 As every language has words to construct statements, C programming also has
words with a specific meaning which are used to construct ¢ program instructions.
In the C programming language, keywords are special words with predefined
meaning. Keywords are also known as reserved words in C programming
language.

0 In the C programming language, there are 32 keywords. All the 32 keywords
have their meaning which is already known to the compiler.

0 Keywords are the reserved words with predefined meaning which already
known to the compiler

0 Whenever C compiler come across a keyword, automatically it understands its
meaning.

2 5
0 Properties of Keywords

o All the keywords in C programming language are defined as
lowercase letters so they must be used only in lowercase letters

O Every keyword has a specific meaning, users can not change that
meaning.

O Keywords can not be used as user-defined names like variable,
functions, arrays, pointers, etc...

O Every keyword in C programming language represents something
or specifies some kind of action to be performed by the compiler.

O The following table specifies all the 32 keywords with their
meaning

32 Keywords in C Programming Language with their Meaning
SNo Keyword Meaning

Unconditional control statement used to terminate
swicth & looping statements

- U to rpreszt hrcfr dtq type |

nc_onlﬂonl cil sfzme_nf used to pass the control
to fhz 'beglnln' of Ioln s’ftet -

sd dn d' b’lok'ln dhilz s{mm

| s ¢'nFAL5EI¢k' Ifs'rdfzmz-n’r

12 Used to represent external storage class

14 Used to define a looping statement

16 sd to d_en' canlﬂonlntrol nfe.me_n
I | It I a 1p¢ mblﬁeht I'r the basic datatype
20 N un-ton xccution
B it woalberihat digss e it Slahoe
4 sd t crecn sfqﬂ vrlabes - cn_sfts-

26

Used to define switch - case statement

28 Used to create union for grouping different types under a name

30 . Used to indicate nothing - return value, parameter of a function
32 e Used to define a looping statement
- All the keywords are in lowercase letters

- Keywords can’t be used as userdefined name like variable name, function name, lable, etc...
- Keywords are also called as Reserved Words

C |Identifiers
B

0 In C programming language, programmers can specify their name to a variable,
array, pointer, function, etc... An identifier is a collection of characters which acts as
the name of variable, function, array, pointer, structure, etc... In other words, an
identifier can be defined as the user-defined name to identify an entity uniquely in
the ¢ programming language that name may be of the variable name, function
name, array name, pointer name, structure name or a label.

0 The identifier is a user-defined name of an entity to identify it uniquely during the
program execution.
0 Example
int marks;
char studentName[30];
o0 Here, marks and studentName are identifiers.

Rules for Creating ldentifiers
;=s.

H

An identifier can contain letters (UPPERCASE and lowercase), numerics &
underscore symbol only.

An identifier should not start with a numerical value. It can start with a letter or
an underscore.

We should not use any special symbols in between the identifier even
whitespace. However, the only underscore symbol is allowed.

Keywords should not be used as identifiers.

There is no limit for the length of an identifier. However, the compiler considers
the first 31 characters only.

An identifier must be unique in its scope.

Rules for Creating Identifiers for better programming
0

0 The following are the commonly used rules for creating
identifiers for better programming...

O The identifier must be meaningful to describe the entity.

O Since starting with an underscore may create conflict with system
names, so we avoid starting an identifier with an underscore.

O We start every identifier with a lowercase letter. If an identifier
contains more than one word then the first word starts with a
lowercase letter and second word onwards first letter is used as an
UPPERCASE letter. We can also use an underscore to separate
multiple words in an identifier.

Valid Identifiers Invalid Identifiers

0 int a,b; O int a b;
0 float _a;

- 0 float 1230q;
0 char _123; '
0 double pi; 0 char str-;
0 int value,Value,vAlue; 0 double pi, g;
O int Auto;

0 int break;

Datatypes

0 Data used in ¢ program is classified into different types based on its properties. In
the C programming language, a data type can be defined as a set of values with
similar characteristics. All the values in a data type have the same properties.

0 Data types in the ¢ programming language are used to specify what kind of value
can be stored in a variable. The memory size and type of the value of a variable
are determined by the variable data type. In a ¢ program, each variable or
constant or array must have a data type and this data type specifies how much
memory is to be allocated and what type of values are to be stored in that variable
or constant or array. The formal definition of a data type is as follows...

0 The Data type is a set of value with predefined characteristics. data types are
used to declare variable, constants, arrays, pointers, and functions.

. Basic Datatypes (Primary Datatpyes)

Interger, Floating Point
Double & Charachter

2. Enumerated types

Used to define variables that can only

Datatypes : .
assign certain integer values

3. void type

The void type indicates that no valuve.
That means an Empty value (nhothing)

4. Derived types

User created datatypes like Array,
structures, unions...

0 In the ¢ programming language, data types are classified as follows...
O Primary data types (Basic data types or Predefined data types)
O Derived data types (Secondary data types OR User-defined data types)
O Enumeration data types
O Void data type

0 Primary data types

0 The primary data types in the C programming language are the basic data types. All
the primary data types are already defined in the system. Primary data types are also
called as Built-In data types. The following are the primary data types in ¢
programming language...

O Integer data type

O Floating Point data type
O Double data type

O Character data type

Basic Datatypes (Primary Datatpyes)

Interger Floating Point Character
—float —char
Signed Unsigned —double —signed char
__int __int long double —Unsigned Char
—short int [—short int

—|ong int —|ong int

Integer Data type
36 H

0 The integer data type is a set of whole numbers. Every
integer value does not have the decimal value. We use
the keyword "int" to represent integer data type in c.
We use the keyword int to declare the variables and to
specify the return type of a function. The integer data
type is used with different type modifiers like short,
long, signed and unsigned. The following table provides
complete details about the integer data type.

Type oize Range Specifier

(B ?r‘re_s‘._l

(ﬂuna.!l':ltmrf int) 2 -32768 to +32767 %d

2,147,483,648

to %d
+2,147,483,647

long int
(signed long int)

unsigned long int 4 0 to 4,294,967,295 %u

Floating Point Data Types

0 Floating-point data types are a set of numbers with the decimal
value. Every floating-point value must contain the decimal value.
The floating-point data type has two variants...

O float
O double

0 We use the keyword "float" to represent floating-point data type
and "double" to represent double data type in c. Both float and
double are similar but they differ in the number of decimal places.
The float value contains 6 decimal places whereas double value
contains 15 or 19 decimal places. The following table provides
complete details about floating-point data types.

float 4 1.2E - 38 to 3.4E + 38 %f

double 8 2.3E-308 to 1.7E+308 %Id

long double 10 3.4E-4932 to 1.1E+4932 %|d

Character Data Type

0 The character data type is a set of characters enclosed in single quotations. The

following table provides complete details about the character data type.

char 1 128 to +127 %c

(signed char)

unsigned char 1 0 to 255 %c

The following table provides complete information about all the data types in ¢ programming

language..
Integer Floating Point Double Character
What is it? Numbers without Numbers with Numbers with Any symbol enclosed
at is it: dzmmal value decimal value decimal value in single quotation
szulord int float double char
Mzmory Slzz 2 or 4 Bytes 4 Bytes 8or 10 5y'rzs | Byte
-32768 to +32767
(or) -128 to + 127
Range 0 to 65535 1.2E - 38 to 3.4E + 38 2.3E-308 to 1.7E+308 (or)
0 to 255

(Incase of 2 bytes only)

...

IR TN NN TN EEE R NN YT EEE N TR RN NS NN I N F RN R AN NN NN R A AN E N PR AN RS AN TR R AR AN AR R A RN R R RS A SRR AN F AN EE SRS NN EEEEEE NN NN EEE NSRRI NN NI NN EEEEE NN EEEE

shor’r long
signed, unsigned

NI NN EN NN NN NN T RN NN NS E N NN E NN AN SR N I E NN N RN NS EE NN IS SN RN EE SNBSS ISR NN RE R SRR AR R E RN E NN R RSN EEETEEENEEEEEEETRCEEEE

Type Qualifier const, volatile const, volatile const, volatil const, volatile

;. 4
void data type

0 The void data type means nothing or no value. Generally, the void is used to specify a function
which does not return any value. We also use the void data type to specify empty parameters
of a function.

Enumerated data type

0 An enumerated data type is a user-defined data type that consists of integer constants and
each integer constant is given a name. The keyword "enum" is used to define the enumerated
data type.

Derived data types

0 Derived data types are user-defined data types. The derived data types are also called as
user-defined data types or secondary data types. In the ¢ programming language, the derived
data types are created using the following concepts...

O Arrays
0O Structures
O Unions
O

Enumeration

Variables
I

0 Variables in a ¢ programming language are the named memory locations where the user can
store different values of the same datatype during the program execution. In other words, a
variable can be defined as a storage container to hold values of the same datatype during the
program execution.

0 The formal definition of a variable is as follows...

O Variable is a name given to a memory location where we can store different values of the
same datatype during the program execution.

0 Every variable in ¢ programming language must be declared in the declaration section before it
is used. Every variable must have a datatype that determines the range and type of values be
stored and the size of the memory to be allocated.

0 A variable name may contain letters, digits and underscore symbol. The following are the rules
to specify a variable name...

O Variable name should not start with a digit.

O Keywords should not be used as variable names.

O A variable name should not contain any special symbols except underscore(_).
O

A variable name can be of any length but compiler considers only the first 31 characters of the
variable name.

Declaration of Variable

O Declaration of a variable tells the compiler to allocate the required amount of
memory with the specified variable name and allows only specified datatype
values into that memory location. In C programming language, the declaration
can be performed either before the function as global variables or inside any
block or function. But it must be at the beginning of block or function.

Declaration Syntax:
datatype variableName;

Example

int number;

0 The above declaration tells to the compiler that allocates 2 bytes of memory
with the name number and allows only integer values into that memory location.

Constants
4 @

0 In C programming language, a constant is similar to the variable but the constant
hold only one value during the program execution. That means, once a value is
assigned to the constant, that value can't be changed during the program
execution. Once the value is assigned to the constant, it is fixed throughout the
program. A constant can be defined as follows...

O A constant is a named memory location which holds only one value throughout the
program execution.

0 In C programming language, a constant can be of any data type like integer,
floating-point, character, string and double, etc.,

Integer constants
.

0 An integer constant can be a decimal integer or octal integer or hexadecimal
integer. A decimal integer value is specified as direct integer value whereas octal
integer value is prefixed with 'o' and hexadecimal value is prefixed with 'OX'.

0 An integer constant can also be unsigned type of integer constant or long type of
integer constant. Unsigned integer constant value is suffixed with 'v' and long integer
constant value is suffixed with 'I' whereas unsigned long integer constant value is
suffixed with 'ul'.

0 Example
0o 125 - Decimal Integer Constant

O76 = Octal Integer Constant

OX3A - Hexa Decimal Integer Constant

50u = Unsigned Integer Constant

30l = Long Integer Constant

100ul = Unsigned Long Integer Constant

T
Floating Point constants
0 A floating-point constant must contain both integer and decimal parts. Some times it may also

contain the exponent part. When a floating-point constant is represented in exponent form, the
value must be suffixed with 'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.
Character Constants

0 A character constant is a symbol enclosed in single quotation. A character constant has a
maximum length of one character.

Example
A
X
"

String Constants

A string constant is a collection of characters, digits, special symbols and escape
sequences that are enclosed in double quotations.

We define string constant in a single line as follows...
"This is C Programming class"

We can define string constant using multiple lines as follows...
" This)\
is\

C Programming class "

We can also define string constant by separating it with white space as follows...
"This" "is" " C Programming "

All the above three defines the same string constant.

Creating constants in C
;. 4

0 In a ¢ programming language, constants can be created using two concepts...
0o Using the 'const' keyword
O Using '#define' preprocessor

Using the ‘const' keyword

0 We create a constant of any datatype using 'const' keyword. To create a constant, we prefix the
variable declaration with 'const' keyword.

0 The general syntax for creating constant using 'const' keyword is as follows...
const datatype constantName ;
OR

const datatype constantName = value ;
o Example

constintx =10;

Here, 'x' is a integer constant with fixed value 10.

Example Program
50

Hinclude<stdio.h>
Hinclude<conio.h>

void main()

{
inti =9 ;

const int x = 10 ;

i=15;
x =100 ; // creates an error
printf("i = %d\n x = %d", i, x) ;

The above program gives an error because we are trying to change the constant variable value (x = 100).

Using 'H#define' preprocessor
sy

We can also create constants using #define CONSTANTNAME value
'Htdefine' preprocessor directive. Example

When we create constant using this #define Pl 3.14
preprocessor directive it must be Here, Pl is a constant with value 3.14
defined at the beginning of the Example Program

program (because all the fidefine Pl 3.14
preprocessor directives must be void main(){

Wl‘iﬂ'en before ’rhe globql int r, area ;

printf("Please enter the radius of circle :) ;

scanf("%d", &r) ;
We use the following syntax to area = Pl (r % 1) ;

. |#d fo {J
create constant using erine printf(" Area of the circle = %d", area) ;
preprocessor directive... }

declaration).

Operators
_ 52|

0 An operator is a symbol used to perform arithmetic and logical operations in o
program. That means an operator is a special symbol that tells the compiler to
perform mathematical or logical operations. C programming language supports a
rich set of operators that are classified as follows.

O Arithmetic Operators

Relational Operators

Logical Operators

Increment & Decrement Operators
Assignment Operators

Bitwise Operators

Conditional Operator

Special Operators

Arithmetic Operators (+, -, *, /, %)

0 The arithmetic operators are the symbols that are used to perform basic mathematical operations like
addition, subtraction, multiplication, division and percentage modulo. The following table provides
information about arithmetic operators.

0 The addition operator can be used with numerical data types and character data type. When it is
used with numerical values, it performs mathematical addition and when it is used with character data
type values, it performs concatenation (appending).

0 The remainder of the division operator is used with integer data type only.

____ Operator | Meaning ________[Bxample _______

+ Addition 10+5=15
- Subtraction 10-5=5
* Multiplication 10*5 =50
/ Division 10/5=2

% Remainder of the Division 5%2=1

= File Edit 3Search Hun Compile Debug FProject Options Window Help

—Ln] ARTHIMET.C 2=[11=
void main()
i

int a,b:

a=20;

b=30:
clrscr():

printf (» athl;

printf (» a—bl;

printf (» axh);

printf(» (Fliat)as(floatlb):

printf (» axb);
getch():
¥

17:9 —

F1 Help Alt-F8 Next Msg Alt-FY Prev Mg Alt-F9 Compile F9 Make F10 Menu

A+B:
A-B:
A=B :
A-B:

10

—10

HEO
0.666667

AmodB: 20

Relational Operators (<, >, <=, >=, , =)
T

0 The relational operators are the symbols that are used to compare two values. That means the relational
operators are used to check the relationship between two values. Every relational operator has two results TRUE
or FALSE. In simple words, the relational operators are used to define conditions in a program. The following
table provides information about relational operators.

| Operator _|Meaning ___________________________|Bxample

< Re'rurns.TRUE if the first value is smaller than second value 10 < 5 is FALSE
otherwise returns FALSE

Returns TRUE if the first value is larger than second value

> S 5
otherwise returns FALSE AR

e Returns TRUE.If the first value is smaller than or equal to second 10 <= 5 is FALSE
value otherwise returns FALSE

.- Returns TRUE if the first value is larger than or equal to second 10 >= 5 is TRUE

value otherwise returns FALSE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is FALSE

I= Returns TRUE if both values are not equal otherwise returns FALSE 10 != 5 is TRUE

= File Edit GSearch BRun Compile Debug Froject UOptions Window Help
RELATION.C

woid main()

i
int a,b:
a=106:
bh=5:

clrscr();

printf (
printf (
printf (
printf (
printf (
printf (

F1 Help Alt-F8 Next Msg Alt-FY Prev Meg Alt-F9 Compile F9 Make F10 Menu

Logical Operators (&&, | |, !)

0 The logical operators are the symbols that are used to combine multiple conditions into one condition. The
following table provides information about logical operators.

0 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is FALSE then complete
condition becomes FALSE.

0 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE then complete
condition becomes TRUE.

“opewor Mg oamie

Logical AND - Returns TRUE if all conditions are TRUE
otherwise returns FALSE

&& 10<5&& 12> 10 is FALSE

Logical OR - Returns FALSE if all conditions are FALSE

< > H
otherwise returns TRUE 10<5 || 12> 10is TRUE

Logical NOT - Returns TRUE if condition is FALSE and returns

| < > i

= File Edit 3Search Hun Compile Debug FProject Options Window Help
LOGICAL.C

woid main()
i
int a,b,c,d:
a=16;
b=5;
c= 12;
d=10;

clrscr();

printf (» (la<b) && (c>d))):
printf (» (la>b) 11 (c>d)));
printf (y1lla<b) && (c>d))):
getch():
¥

F1 Help Alt-FO Next Msg Alt-F7 Prev Meq Alt-F9 Compile F9 Make F10 Menu

10<5 && 12>10: O
10<5 i1 12>10: 1
P15 && 12>10)

Increment & Decrement Operators (++ & --)
S

0 The increment and decrement operators are called unary operators because both need only one
operand. The increment operators adds one to the existing value of the operand and the decrement
operator subtracts one from the existing value of the operand. The following table provides
information about increment and decrement operators.

0 The increment and decrement operators are used Infront of the operand (++a) or after the operand
(a++). If it is used in front of the operand, we call it as pre-increment or pre-decrement and if it is
used after the operand, we call it as post-increment or post-decrement.

____ Operatr [Meaning _________|Bxample

Increment - Adds one to inta = 5;
existing value at+; > a=6

++

Decrement - Subtracts one int a = 5;
from existing value a--; >a=4

Pre-Increment or Pre-Decrement
Ce3 f

0 In the case of pre-increment, the value of the variable is increased by one before the expression
evaluation. In the case of pre-decrement, the value of the variable is decreased by one before the
expression evaluation. That means, when we use pre-increment or pre-decrement, first the value of
the variable is incremented or decremented by one, then the modified value is used in the expression

evaluation.

Example Program

#include<stdio.h>
#include<conio.h>

void main(){

int i = 5,3;
j = ++1i; // Pre-Increment

printf("i = %d, j = %d",i,3);

Post-Increment or Post-Decrement
e L

0 In the case of post-increment, the value of the variable is increased by one after the expression
evaluation. In the case of post-decrement, the value of the variable is decreased by one after the
expression evaluation. That means, when we use post-increment or post-decrement, first the expression
is evaluated with existing value, then the value of the variable is incremented or decremented by one.

Example Program

#include<stdio.h>

#include<conio.h?>

void main(){

int 1 = 5,3;
j = i++; [/ Post-Increment

printf("i = %d, § = %d",i,7);

Assignment Operators (=, +=, -=, *=, /=, %=)
B

0 The assignment operators are used to assign right-hand side value (Rvalue) to the left-hand side variable
(Lvalue). The assignment operator is used in different variants along with arithmetic operators. The
following table describes all the assignment operators in the C programming language.

Operator |Meaning ___ |Bomple

= Assign the right-hand side value to left-hand side variable A=15
. A+=10
+= Add both left and right-hand side values and store the result into left-hand side variable _
= A=A+10
_ Subtract right-hand side value from left-hand side variable value and store the result into left- A-=B8B
hand side variable = A=A-B
o Multiply right-hand side value with left-hand side variable value and store the result into left- A*=B
hand side variable = A = A*B
= Divide left-hand side variable value with right-hand side variable value and store the result into A /=B
the left-hand side variable = A=A/B
0= Divide left-hand side variable value with right-hand side variable value and store the A %=B
o—

remainder into the left-hand side variable = A = A%B

= File Edit Search Run Compile Debug FProject Options Window Help

—Ln] ASSIGHNME . C 1=[11=
void main()
i

int a,b:

a=20;

b=40);
clrscr();

printf (» a+=bJl;

printf (» a—=b):

printf(» a*=h);

printf (» a-=b):

printf(» a#=b):
getch();
hy

£0:49 —— —

F1 Help Alt-FG Next Meq Alt-F? Prev Msg AlL-F9 Compile F9 Make F10 Menu

A+=B: 60
A—-=B: 20
A==B: 800
A-=B: Z0
Amod=B: 20_

Bitwise Operators (&, |, *, ~, >>, <<)
_es 0

0 The bitwise operators are used to perform bit-level operations in the ¢ programming language. When we use the bitwise operators,

the operations are performed based on the binary values. The following table describes all the bitwise operators in the C
programming language. Let us consider two variables A and B as A =25 (11001) and B = 20 (10100).

Operator | Meaning _________________________________ |Bample

&

<<

>>

the result of Bitwise AND is 1 if all the bits are 1 otherwise it is O

the result of Bitwise OR is O if all the bits are O otherwise it is 1

the result of Bitwise XOR is O if all the bits are same otherwise it is 1

the result of Bitwise once complement is negation of the bit (Flipping)

the Bitwise left shift operator shifts all the bits to the left by the specified number
of positions

the Bitwise right shift operator shifts all the bits to the right by the specified
number of positions

A&B

= 16 (10000)
Al|B

= 29 (11101)
ANB

= 13 (01101)
~A

= 6 (00110)

A<<2
= 100 (1100100)

A >> 2
= 6 (00110}

Run Compile Debug Froject Options Window Help
BITWISE.C

clrscr();

print j(
printf (
printf (
printf (
printf (
printf (
printf (

getch();

¥

F1 Help aAlt-F8 Next Msg AlL-F? Prev Meg Alt-F9 Compile F9 Make F10 Menu

25&20: 16
25120: 29
25720 : 13
25 : -Zb
20 1 21
ad<Z @ 100
ar»2 ' b

Conditional Operator (?:)

0 The conditional operator is also called a ternary operator because it requires three operands. This
operator is used for decision making. In this operator, first we verify a condition, then we perform one
operation out of the two operations based on the condition result. If the condition is TRUE the first
option is performed, if the condition is FALSE the second option is performed. The conditional
operator is used with the following syntax.

0 Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?7100:200; = A value is 100

= File Edit GSearch HRun Compile Debug Project Options Window Help
CONDITIO.C

wvwoid main()

i
int a,hb:
a=10:
h=15:

clrscr():

printf (y (a<bI?T100:1200);

getch():
¥

F1 Help Alt-F8 Hext Megq AlL-F7 Prev Mesg AlL-F9 Compile F9 Make F10 Menu

The Ualue of A is @ 1600

Special Operators (sizeof, pointer, comma, dot, etc.)
.00V

0 The following are the special operators in ¢ programming language.

sizeof operator

0 This operator is used to find the size of the memory (in bytes) allocated for a variable. This
operator is used with the following syntax.

O sizeof(variableName);

Example
O sizeof(A); = the result is 2 if Ais an integer
Pointer operator (¥*)
0 This operator is used to define pointer variables in ¢ programming language.
0o Comma operator (,)

0 This operator is used to separate variables while they are declaring, separate the expressions in
function calls, etc.

Dot operator (.)

0 This operator is used to access members of structure or union.

Expression
75—

O

In any programming language, if we want to perform any calculation or to frame any condition
etc., we use a set of symbols to perform the task. These set of symbols makes an expression.

In the C programming language, an expression is defined as follows.
An expression is a collection of operators and operands that represents a specific value.

In the above definition, an operator is a symbol that performs tasks like arithmetic operations,
logical operations, and conditional operations, etc.

Operands are the values on which the operators perform the task. Here operand can be a
direct value or variable or address of memory location.

In the C programming language, expressions are divided into THREE types. They are as follows...
O Infix Expression
O Postfix Expression

O Prefix Expression

The above classification is based on the operator position in the expression.

Expression Types in C

O Infix Expression

O The expression in which the operator is used between operands is called infix expression.

0 The infix expression has the following general structure.
Operand1 Operator Operand?

Example

Operand1 . Operator _ Operand?2

) W 4
a+b

Postfix Expression
The expression in which the operator is used after operands is called postfix expression.

The postfix expression has the following general structure.

Operand1 Operand2 Operator

Example

O

P!
d

rand2 Operator

&
I

Operand1

Prefix Expression

The expression in which the operator is used before operands is called a prefix expression.
The prefix expression has the following general structure.

Operator Operand1 Operand?

Example

Operator Op

3

_Operand2

era nd1l

Expression Evaluation
masS

0 In the C programming language, an expression is evaluated based on the operator precedence and
associativity. When there are multiple operators in an expression, they are evaluated according to
their precedence and associativity. The operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

0 To understand expression evaluation in ¢, let us consider the following simple example expression...
10+4*3 /2

0 In the above expression, there are three operators +, * and /. Among these three operators, both
multiplication and division have the same higher precedence and addition has lower precedence.
So, according to the operator precedence both multiplication and division are evaluated first and
then the addition is evaluated. As multiplication and division have the same precedence they are
evaluated based on the associativity. Here, the associativity of multiplication and division is left to
right. So, multiplication is performed first, then division and finally addition. So, the above
expression is evaluated in the order of * / and +. It is evaluated as follows...

4%3 ====>12
12 /2===>6
10 + 6 ===> 16

0 The expression is evaluated to 16.

Operator Precedence and Associativity
80

0 Operator precedence is used to determine the order of operators
evaluated in an expression. In ¢ programming language every operator
has precedence (priority). When there is more than one operator in an
expression the operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

0 Operator associativity is used to determine the order of operators with
equal precedence evaluated in an expression. In the ¢ programming
language, when an expression contains multiple operators with equal
precedence, we use dassociativity to determine the order of evaluation of
those operators.

0 In ¢ programming language the operator precedence and associativity are
as shown in the following table.

Precedence | Operator |Operator Meaning Associativity
{) function call
1 1] array reference Left to Right
-= structure member access
. structure member access
I negation
-~ 1's complement
+ Unary plus
- Unary minus
2 ++ increment operator Right to Left
-- decrement operator
& address of operator
* pointer
sizeof returns size of a variable
(type) |type conversion
* multiplication
3 ! division Left to Right
% remainder
+ addition -
4 - ublraction Left to Right
=< left shift -
5 = right shift Left to Right
< less than
6 <= less than or equal to Left to Right
> greater than
== greater than or equal to
7 == |equalto Left to Right
1= not equal to
8 & bitwise AND Left to Right
9 n bitwise EXCLUSIVE OR Left to Right
10 | bitwise OR Left to Right
11 && logical AND Left to Right
12 /| logical OR Left to Right
13 ?: conditional operator Left to Right
= assignment
= assign multiplication
= assign division
= assign remainder
+= assign addition
14 -= assign subftraction Right to Left
&= assign bitwise AND
M= assign bitwise XOR
= assign bitwise OR
<<= assign left shift
= assign right shift
15 , separator Left to Right

Library Functions
... A4

0 The standard functions are built-in functions. In C programming language, the standard
functions are declared in header files. The standard functions are also called as library
functions or pre-defined functions.

0 In C when we use standard functions, we must include the respective header file using
#include statement. For example, the function printf() is defined in header file stdio.h
(Standard Input Output header file). When we use printf() in our program, we must
include stdio.h header file using #include<stdio.h> statement.

0 The C standard library provides macros, type definitions and functions for tasks such as
string handling, mathematical computations, input/output processing, memory
management, and several other operating system services.

0 C Programming Language provides the following header files with standard functions.

stdio.h
conio.h
math.h
string.h
stdlib.h
time.h
ctype.h
setjimp.h
signal.h
assert.h
locale.h
stdarg.h
errno.h
graphics.h
float.h
stddef.h

limits.h

Provides functions to perform standard | /O operations

Provides functions to perform console | /O operations

Provides functions to perform mathematical operations

Provides functions to handle string data values

Provides functions to perform general functions /td>

Provides functions to perform operations on time and date

Provides functions to perform - testing and mapping of character data values
Provides functions that are used in function calls

Provides functions to handle signals during program execution

Provides Macro that is used to verify assumptions made by the program
Defines the location specific settings such as date formats and currency symbols
Used to get the arguments in a function if the arguments are not specified by the function
Provides macros to handle the system calls

Provides functions to draw graphics.

Provides constants related to floating point data values

Defines various variable types

Defines the maximum and minimum values of various variable types like char, int and long

printf(), scanf()
clrscr(), getch()
sqri(), pow()
strlen(), strcpy()
calloc(), malloc()
time(), localtime()
isalpha(), islower()
setjump(), longjump()
signal(), raise()
assert()

setlocale()
va_start(), va_end()
Error, errno

circle(), rectangle()

clearerr fclose fcloseall fdopen feof ferror
fflush fgetc fgetchar fgetpos fgets fileno
f lushall fopen fprintf fputc fputchar fputs
fread freopen f=canf f=eek f=etpos ftell
furite getc getchar gets getw pErTor
printf putc putchar puts puti remove
r'ename rewind rmtmp scanf setbuf setvbuf
sprintf gscanf strerror _strerror tempnam tmpfile
tmpnam ungetc unlink viprintf v scanf vpr intf
vscanf vsprintf vescanf

buffering modes BUFS1Z
_F_BIN _F_BUF
_F_ERR _F_IN

cgets
cputs
getche
gotoxy
inport
lowvideo

outport
puttext
textcolor

wherey

clreol

cscanf

getpass
highvideo
inporthb
movetext
outporth
_setcursortype
textmode
window

clrscr
delline

g ttext
insline
inpw
normideo
outpw
textattr
ungetch

cprintf

getch
gettextinfo
inp

kbhit

outp

putch
textbackground
wherex

BL INK
_NORMALCURSOR
_wecroll

COLORS
_SOLIDCURSOR

directvideo
text info

_NOCURSOR
text modes

—Ln] Help Z=[11=
abs acos, acosl asin, asinl
atan, atanl atan, atanZl atof , _atold
cabs, cabzsl ceil, cei 1 COS, cozl
cosh, coshl exp, expl fabs, fab=sl
f loor, floorl fmod, fmodl frexp, frexpl
hypot, hypotl labs ldexp, ldexpl
log, logl logl0o, loglol matherr, _matherrl
modf , modf 1 poly, polyl PO, powl
powli, powli] zin, zinl sinh, zinhl
zqrt, zqrtl tan, tanl tanh, tanhl
complex (struct) _complex]l (struct) EDOM
ERANGE exception (struct) _exceptionl (struct)
HUGE_UAL M E M_LOGZE T

= File Edit 3Search Run Compile Debug FProject Options Window Help
—Ln] MATH.C 1=[11
ftinclude<stdio.h>

ftinclude<conio.h?

finclude<math.h>

ftdef ine PI 3.14159265

void main()

i

float wval:
clrscr();

% Example for Math Functions=-

printf (, abs(-10));
printf (C » celill(
printf (» Tloor(
printf (» =qrtibgh));

val = PI -~ :

printf (cos(18C=ual));
printf (sin(18Gwal));
printf (tan(18Ckwal));

getch():

3:11 :
F1 Help nAli-F8 Next Msg Alt-FY —F9 Compile F39 Make F10 Menu

abs(value): 10
ceil(123.456): 124 . OEE0E6
floor(123.456): 123 .000000
sqrt(625): 25.000000
cos(9@): —1 . CEOEEEE

Sin(90) : O, COEEEE
tan(90) 1 —0, OEEEEE

_fmemccpy
_fmemset

_f=strcspn
_f=strncat

_fstrpbrk

_fstrstr

mMEmCmp
movedata
strchr
strdup
strlur
strnicmp
strset
strupr

_fmemchr
_F=strcat
_fstrdup
_fstrncmp
_Fstrrchr
_fstrtok
mEmCpL
MOINEM
strcmp
_strerror
strncat
strnset
strspn

_fmemcmp
_f=strchr
_f=stricmp
_fstrnicmp
_fstrrev
_f=strupr
memicmp
setmem
strcmpi
strerror
strncmp
strpbrk
stratr

_fmemcpy
_fFstrcmp
_Istrlen
_f=strncpy
_fstrset
meEmCCpy
mMEmMmMoVE
stpcpy
strcpy
stricmp
strncmpi

strrchr
strtok

_fmemicmp
_fstrcpy
_Istrlwr
_F=strnset
_Fstrspn
memchr
memset
strcat
strcspn
strlen
strncpy
strrev
strxfrm

DATA INPUT AND OUTPUT FUNCTIONS

Dr P.V. Praveen Sundar,

Assistant Professor,

Department of Computer Science
Adhiparasakthi College of Arts & Science,
Kalavai.

03-01-2022 - Il Bsc Maths

Data Input and Output functions

0 C programming language provides many built-in functions to read any given input
and to display data on screen when there is a need to output the result. All these
built-in functions are present in C header files.

0 The ¢ programming language provides the following basic built-in input functions.
O getchar() and putchar()

getch() and putch()

getche()

getc() and putc()

gets() and puts()

scanf() and printf()

fscanf() and fprintf()

getchar()

[

The getchar() function is used to read a character from the keyboard
and return it to the program.

This function is used to read a single character. To read multiple
characters we need to write multiple times or use a looping statement.

Syntax of getchar()

The function does not have any parameters. However, it returns the read
characters as an unsigned char in an int.

putchar()
93

0 The putchar(int char) method in C is used to write a character, of
unsigned char type, to stdout. This character is passed as the
parameter to this method.

Syntax:

0 Parameters: This method accepts a mandatory parameter char
which is the character to be written to stdout.

0 Return Value: This function returns the character written on the
stdout as an unsigned char. It also returns EOF when some error

OCCUrs.

= File Edit 3Search Run Compile Debug FProject Options Window Help

—Ln] GETCHAR .C 1=[11=
void main()
i
char ch:
clrscr(): _
printf ();
ch = getchar();
putchar(chl;
¥
e 7:10 =—— |

F1 Help Alt-F8 Next Megq Alt-F? Prev Meg AlL-F9 Compile F9 Make F10 Menu

Enter any character : C

getch() and putch()

0 getch() is a nonstandard function and is present in conio.h header file which
is mostly used by MS-DOS compilers like Turbo C.

0 Like these functions, getch() also reads a single character from the
keyboard. But it does not use any buffer, so the entered character is
immediately returned without waiting for the enter key.

0 Syntax:
Parameters: This method does not accept any parameters.
Return value: This method returns the ASCII value of the key pressed.

The putch() function is used for printing character to a screen at current
cursor location. It is unformatted character output functions. It is defined in
header file conio.h.

= File Edit GSearch HRun Compile Debug FProject Options Window Help

void main()
1
char ch:
clrscr();
printf (
ch = getch();
printf (
putchich):
getch():
¥

F1 Help AlIt-F8 NHext Msq Alt-FY Prev Msq Alt-F9 Compile F9 Make F10 Menu

Press any character:
Pressed character is:D

getche()

... A4
0 Like getch(), getche() is also character input functions.

0 It is unformatted input function meaning it does not allow user
to read input in their format.

0 Difference between getch() and getche() is that getche() echoes
pressed character.

0 getche() also returns character pressed like getch(). It is also
defined in header file conio.h.

= File Edit Search Run Compile Debug Project Options Window Help
[#]| GETCHE.C =2=[¢]?

#include<stdio.h>
#tinc lude<conio.h>

void main()

i
char ch:

clrscr();
printf ();
ch=getche():
printf ();
putch(ch):

getch():

¥

F1 Help Alt-F8 Ne -F9 Compile F9 Make F10 Men

Press any character:P
Pressed Character is :P

getc and putc()
|

0 int getc(FILE *stream) gets the next character (an unsigned char) from the
specified stream and advances the position indicator for the stream.

0 Syntax ie’rc“ function.

0 Parameters

stream — This is the pointer to a FILE object that identifies the stream on which the
operation is to be performed.

0 Return Value

This function returns the character read as an unsigned char cast to an int or EOF on
end of file or error.

File Edit 3Search Hun Compile Debug Froject Options Window Help
GETC.C 2=[1]1=)

int main ()
i
char c:
clrscr(): _
printf (
c = getcistdinl:
printf (
putc(c, stdout):

return(@):

6:10 —— |
F1 Help gnlt-FG Next Msg Alt-F7? Prev Megq Alt-F9 Compile F9 Make F10 Menu

Enter character: S

gets() and puts()

0 The C library function char *gets(char *str) reads a line from stdin and
stores it into the string pointed to by str. It stops when either the newline
character is read or when the end-of-file is reached, whichever comes first.

0 Syntax of gets() function.

0 Parameters
str — This is the pointer to an array of chars where the C string is stored.

0 Return Value

This function returns str on success, and NULL on error or when end of file occurs,
while no characters have been read.

0 The C library function int puts(const char *str) writes a string to stdout up to
but not including the null character. A newline character is appended to the
oufput.

0 Syntax of puts() function.

Parameters
str — This is the C string to be written.

Return Value
If successful, non-negative value is returned. On error, the function returns EOF.

Compile Debug Project Options Window Help

unld maln()
1
char strl20]:
clrscr();
printf (
gets(stir):
printf (
puts(str);
getch():
¥

P Help hitor Next Msg ALt-F7 Prev Msg AIL-F9 Compile F9 Make F10 Menu

Enter the String:C Programming
Entered 3String is C Programming

scanf()

0 The scanf() stands for Scan formatting and is used to read formatted data
from keyboard.

0 The scanf() function is used to read multiple data values of different data
types from the keyboard.

0 The scanf() function is built-in function defined in a header file called
"stdio.h".

0 When we want to use scanf() function in our program, we need to include
the respective header file (stdio.h) using #include statement.

0 The scanf() function has the following syntax...

Syntax:
scanf("format strings”,&variableNames);

0 The format specifiers are used in C for input and output purposes. Using this
concept the compiler can understand that what type of data is in a variable
during taking input using the scanf() function and printing using printf() function.
Here is a list of format specifiers.

Y%c Character

%d Signed integer

%e or %E Scientific notation of floats
%f Float values

%g or %G Similar as %e or %E

%hi Signed integer (short)

%hu Unsigned Integer (short)

Yoi

%I or %ld or %li
%olf

%olLf

Ylu

%lli or %lld
Yollu

%o

Yop

%os

%u

%x or %X
%on

%%

Unsigned integer

Long

Double

Long double

Unsigned int or unsigned long
Long long

Unsigned long long

Octal representation
Pointer

String

Unsigned int

Hexadecimal representation
Prints nothing

Prints % character

File Edit Search BRun Compile Debug PFProject Options Window Help
—— J(ANF . —=-=-=(1]=l!

[l]
include<stdio.h>

unld main()

{

int a,b,c:
clrscr();

printf ():

scanf (y&a ,&b):

c= a+b;

printf (,a,b,c);
getch();_
hy

F1 Help ﬂlt—FB Next Hsg ﬂlt-F? Preu Hsg ﬁlt—FB Cnmplle F9 Hake F10 Menu

Enter the Ualues of A and B:10 20

The Addition of 10 and 20 is 30_

printf()

0 printf() stands for print formatting and is used to display information
required by the user and also prints the values of the variables.

0 Syntax:
printf(“format_string”, varl, var2, var3, ..., varN);

0 Where format_string may contain :
O Characters that are simply printed as they are.
O Format specifier that begin with a % sign.
O Escape sequences that begin with \ sign.

0 The format string indicates how many arguments follow and what their
types are. The arguments varl, var2, ..., varN are the variables whose
values are formatted and printed according to format specifications of the
format string. The arguments must match in number, order and type with
the format specifications.

CONTROL STATEMENTS IN C

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science
Adhiparasakthi College of Arts & Science,
Kalavai.

10-01-2022 Il BSc¢ Mathematics

Control Statements
. I

0 The control statements are used to control the flow of execution of the
program.

0 If we want to execute a specific block of instructions only when a certain
condition is true, then control statements are useful.

o If we want to execute a block repeatedly, then loops are useful.

0 C classifies these control statements into two categories
O Conditional execution

0 Unconditional execution

Conirol Flow sfafements

Conditional

Unconditional

v v \4

Simple if

[

Simple if statement is used to verify the given condition and executes the
block of statements based on the condition result.

The simple if statement evaluates specified condition.
If it is greater than 1, it executes the next statement or block of statements.

If the condition is O, it skips the execution of the next statement or block of
statements.

Simple if statement is used when we have only one option that is executed or
skipped based on a condition.

The general syntax and execution flow of the simple if statement is as follows.

Syntax Execution flow diagram

if (condition)

{

block of statements;

if block of statements

normal statements

= File Edit Search Run Compile Debug Project Options Window Help
[#]|——————— SIMPLEIF.C =2=[¢]?

#include<stdio.h>
#tinc lude<conio.h>

void main()

! i
int age:

clrscr();
printf ():
scanf (,Gage);

if (age>18)

printf ()]
getch();
¥

F1 Help Alt-F8 Ne -F9 Compile F9 Make F10 Men

Enter the fAge :20
You are eligible to Uote_

Enter the Age :17

If-else statement
e

0 The if-else statement is used to verify the given condition and executes only
one out of the two blocks of statements based on the condition resuli.

0 The if-else statement evaluates the specified condition.
o If it is greater than 1, it executes a block of statements (True block).
0 If the condition is O, it executes another block of statements (False block).

0 The if-else statement is used when we have two options and only one
option has to be executed based on a condition result (TRUE or FALSE).

0 The general syntax and execution flow of the if-else statement is as
follows.

Syntax

if (condition)

{

True block of statements;

}...

else

{

False block of statements;

Execution flow diagram

TRUE FALSE

True block of statements False block of statements

normal statements

= File Edit 3Search Run Compile Debug Project Options Window Help

#include<stdio.h>
#tinc lude<conio.h>

void main()

[# | [FELSE.C =3=[¢]?

i
int age:
clrscr();
printf ():
scanf (,Gage);
if (age>18)
printf ();
else
printf ();
getch():
¥

F1 Help Alt-F8 Ne 1t-F7? Prev Msg ompile F9 Make F

Enter the fAge :20
You are eligible to VUote

Enter the Age :17
You are not eligible to Vote

File Edit 3Search Run Compile Debug PFProject Options Window Help

#include<stdio.h>

[8]|———— POSITIE.(————2=[1]
#include<conio.h> =§

int value:
clrscr();
printf ():

scanf (yavalue)d !

if (abs(valuel)+ (-value))

{
printf (;svalue)d:
¥
else i
{
printf (;,value):

F1 Help Alt-F8 Ne -F9 Compile F9 Make F10 Men

Enter the Value 10

10 is a Positive Number _

Enter the Value -10
-10 is a Negative Number

Nested if statement
BE 0

0 Writing a if statement inside another if statement is called nested if statement.

0 The nested if statement can be defined using any combination of simple if & if-else
statements.

0 The general syntax of the nested if statement is as follows...
Syntax

if (condition1)

{
if (condition2)

{

True block of statements 1;

}
,
else

{
}

False block of condition1;

File Edit 3Search Run Compile Debug Project Options Window Help

[#]|=—————— NESTEDIF.(——1=[1]
void main()
{
int age:
clrscr();
printf () -
scanf (y&age):

if (age>18)

i
if (age<120)
printf ():
else
printf ():
I
else
if (age<=0)
printf ():
else
printf ():
getch();

¥

21:10

F1 Help Alt-F8 Ne

Enter the Age :-10
Invalid age_

Enter the Age :17
You are not eligible to Vote

Enter the fAge :20
You are eligible to Uote

Enter the Age :125
You are not eligible to Uote

File Edit 3Search Run Compile Debug Project Options Window Help
[#]|=————— BIGGEST.C =l=[¢]?

float first_value,second_value,third_wvalue:
printf ():
scanf (J&f irst value,&second value,&third value):

if (first value<second_value)

i
if (second_wvalue<third value)
printf (;third_value):
else
printf (;second_value);
}
else
i
if(first value<third value)
printf (sthird_value):
else
printf (;second_wvalue);

F1 Help Alt-F8 Next Msqgg Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

Enter the Values :10.12 20.11 10.01
20.11 is the Biggest Value

if...else if...else statement
B 00

0 The if-else-if ladder statement executes one condition from multiple
statements. The execution starts from top and checked for each if condition.

0 We can use multiple else if blocks to add multiple conditions but it requires
at least one if block at the beginning, we can't directly write else and else
if statements without having any if block.

0 The statement of if block will be executed which evaluates to be true. If
none of the if condition evaluates to be true then the last else block is
evaluated.

0 The general syntax of the if-else-if statement is as follows...

if (condition 1)
statement-1;

else if (condition 2)
statement-2;

else if (condition 3)
statement-3;

else if (condition n)
statement-n;

else
default-statement;

statement-x; =

Statement 1

Statement 2

Body of eise

Statement just
below if- elseif

#include<stdio.h>
#tinc lude<conio.h>

void main()

i
int age:
clrscr();
printf ():
scanf (,Gage);
if (age<=0 ii age >120)
printf ();
else if (age>= 18 && age <120)
printf (
else
printf (
getch():
¥

= File Edit Search Run Compile Debug Project Options
[#]|—————— [FELSEIF.C

Window Help

2=[¢]?

F1 Help Alt-F8 Ne

-F9 Compile F9 Make F10 Men

Enter the Age :-10
Invalid age_

Enter the fAge :10
You are not eligible to Uote

Enter the fAge :20
You are eligible to Uote

Enter the Age :125
Invalid age_

File Edit 3Search Run Compile Debug Project Options Window Help
[#]| = BIGGEST1.C =3=[¢]?

int numl, numZ, num3:

printf ();
scanf (;dnuml):;
printf () -
scanf (yanume) ;
printf ():

scanf (yénum3) ;
if (CnumI>numZ)&& (huml> num3))

printf (;numl);
else if ((numZ>numl) && (humZ>num3))

printf (ynums) ;
else

printf (,num3) ;

F1 Help Alt-F8 Ne Alt-F9 Compile FY9 Make

Enter
Enter

Enter
Third

value for
value for
value for
number is

First number :10
Second number :20

Third number :30
greatest

Enter
Enter

Enter
First

value for
value for
value for
number is

First number :30
Second number :20

Third number :10
greatest:

Enter value for First number :20
Enter value for Second number :30
Enter value for Third number :10
second number is greatest

Switch Statement
|
0 In C, Switch statement is a multiway branch statement.

It provides an efficient way to transfer the execution to different parts of a code
based on the value of the expression.

0 The switch expression is of integer type such as int, char, or short, or of an
enumeration type, or of string type.

0 The expression is checked for different cases and the one match is executed.

0 The switch statement is often used as an alternative to an if-else construct if a single
expression is tested against three or more conditions.

0 When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

0 Not every case needs to contain a break. If no break appears, then it will raise a
compile time error.

0 In C, duplicate case values are not allowed.

0 The data type of the variable in the switch and value of a case must be
of the same type.

0 The value of a case must be a constant or a literal. Variables are not
allowed.

0 The break in switch statement is used to terminate the current sequence.

0 The default statement is optional and it can be used anywhere inside the
switch statement.

0 Multiple default statements are not allowed.

Syntax:
Switch
(Conditional Expression)
switch (expression) { l
Statement 1
case valuel: // statement sequence > break;]
break;
Case ! Statement 2 -
Condition break;
case value2: // statement sequence
break;
Statement n
: i break; >
case valueN: // statement sequence
Defauit
break 5 Default > Statement >
h 4
Statement just
default: // default statement sequence beiow Swilch Gase

}

= File Edit Search Run Compile Debug Project Options Window Help
[#]| SWITCH.C =4=[t]1

void main()
{
int value:;

printf ();
scanf (;&value):
switch(value)
i
case 1:
cout<< ;break:
case 2.
cout<< ;break:
case 3:
cout<< H
case 4.
cout<< ;break:
case 5.
cout<< :break:
default:

cout < :break:

Enter the value between 1 to 5:1
You have Entered One_

Enter the value between 1 to 5:10
You have Entered invalid no

File Edit 3Search Run Compile Debug Project Options Window Help

[#]| SUWITCHCH.C ————5=[1]
void main()
1
char op:;
int valuel=20,value2=30;
clrscr();
printf ()
scanf (yGop):
switch(op)
 §
case
printf (» (valuel+valued)):break:
case -
printf (y (valuel-valued)):break:
case :
printf (y (valuel=valuel)) :break:
case
printf (» (valuelrsvaluel)):break:
default:

printf (): break:

Enter the operator:+
Answer is 5H50_

File Edit 3Search Run Compile Debug Project Options Window Help

[8] SWITCHZ . —=[11
void main()
1
char op:;
clrscr();
printf ():
scanf (,&op)
switch(op)
{ i
case -
case
case
case
case :
printf ();
break:
default:
printf ();
break:
 §
getch();

¥

21:16

F1 Help Alt-F8 Ne

Enter the operator:+
Ualid Arithmetic Operations

Enter the operator:)
You have Entered invalid operation

lteration Statements
CTe2 |

0 lteration statements or Loops dare used in programming to
repeatedly execute a certain block of statements until some

condition is met.

0 The following statements repeatedly execute a statement or a
block of statements:

O The for statement: executes its body while a specified Boolean
expression evaluates to true.

O The do statement: conditionally executes its body one or more times.
O The while statement: conditionally executes its body zero or more times.
0 At any point within the body of an iteration statement, you can

break out of the loop by using the break statement, or step to the
next iteration in the loop by using the continue statement.

while loop
163

0 C provides the while loop to repeatedly execute a block of code as long as the
specified condition returns false.

0 The while loop starts with the while keyword, and it must include a conditional
expression inside brackets that returns either true or false.

0 It executes the code block until the specified conditional expression returns O.

0 In a while loop, initialization should be done before the loop starts, and increment or
decrement steps should be inside the loop.

0 The statement(s) inside the while loop may be a single statement or a block of
statements.

0 The key point of the while loop is that the loop might not ever run. When the
condition is tested and the result is false, the loop body is skipped and the first
statement after the while loop is executed.

Syntax

The syntax of a while loop in C programming language is -

while (condition) {

statement (s) ;

?

while(condition)

{

conditional code ;

}

lf condition
is true

code block If condition
is false

File Edit Search

[n]
void main()
1
int i=0,m,n:
clrscr();
printf (
scanf (,&n):
printf (
scanf (,&m) ;
while(i<=n)
{
printf (
1++;
}
getch():

Run Compile Debug PFProject Options Window Help

WHILE.C =l=[¢]?

):

.-i;m, i*m);

F1 Help Alt-F8 Ne

Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

Enter the N value:10

Enter the M value:5
=0

o

10

15

20

25

30

35

40

g

O =5 =50

o)
X
N

X

X X X X X X X X
g d
L T T T T 1 T 1 O

= O ~JU b WN =

do while Statement
CTes |

0 The do while loop is the same as while loop except that it executes the code block at
least once.

0 The do-while loop starts with the do keyword followed by a code block and a
conditional expression with the while keyword.

0 The do while loop stops execution exits when a condition evaluates to false. Because
the while(condition) specified at the end of the block, it certainly executes the code
block at least once.

0 In a while loop, initialization should be done before the loop starts, and increment or
decrement steps should be inside the loop.

0 The statement(s) inside the while loop may be a single statement or a block of
statements.

0 The key point of the do while loop is that the loop will executed at least once, even
on the first time When the condition is tested and the result is false.

0 This is the reason, do while is called as exit controlled loop.

e code block

If condition
is true

condition

If condition
is false

File Edit Search

int i=0,m,n:

clrscr();

getch():

printf (
scanf (,a&nd;
printf (
scanf (,&m);
do
{
printf (
1++;

Jwhile(i<=n);

Compile Debug Project
DOWHILE.C

.-i;m, i*m);

Options

Window Help

1=[¢]?

F1 Help

Alt-FB8 Ne

9 Compile F9 Make F10 Menu

Enter the N value:0
Enter the M value:5
O x5 =0

Enter the N value:10

Enter the M value:2
=0

.

4

b

8

10

12

14

16

18

20

(o

X X X X X X X X X
NENNNNNNNNDKN
L T T T T 1 T 1 O

= O ~JU b WN =

@
3

™
I

for loop
T

0 A for loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times.

O for loop has three statements: initialization, condition and iterator.

O The initialization statement is executed at first and only once. Here, the variable
is usually declared and initialized.

O Then, the condition is evaluated. The condition is a Boolean expression, i.e. it
returns either true or false.

O If the condition is evaluated to true:
m The body of the loop, which must be a statement or a block of statements.

m Then, the iterator statement is executed which usually changes the value of the initialized
variable.

® Again the condition is evaluated.
®m The process continues until the condition is evaluated to false.

o If the condition is evaluated to false, the for loop terminates.

174 R

0 The iterator section can contain zero or more of the following statement
expressions, separated by commas:

O prefix or postfix increment expression, such as ++i or i++
O prefix or postfix decrement expression, such as --i or i--
O assignment

0 invocation of a method

0 All the sections of the for statement are optional.

4
1

P e i ettt T

Syntax

The syntax of a for loop in C programming language is -

for (i1nit; condition; i1ncrement) {

statement (s) ;

—————

for(init; condition; increment)

{
}

conditional code ;

condition

If condition
is true

code block If condition
is false

increment

File Edit 3Search Run Compile Debug Project Options Window Help

[#]———— FOR.(——m———71=[1]
void main() ?

int i,m,n:;

clrscr();
printf () -
scanf (;&n)d;
printf ();
scanf (;&m) ;
for(i=0;i<=n:i++)
1

pI‘il‘ltf(.-i.-m, i*m);

i

getch();

3

F1 Help Alt-F8 Ne Prev Msg Alt-F9 Compile F9 Make F10 Menu

Enter the N value:10

Enter the M value:2
=2

4

b

8

10

12

14

16

18

20

4

NINNNNNNNEN

(1 A 1 A I A 1 B

X X X X X X X X

= O ~JO U b WN =

@
X

N
I

break Statements

GG
Break (breaks the loop/switch)

0 Break statement is used to terminate the current loop iteration or terminate
the switch statement in which it appears.

0 When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next statement
following the loop.

0 Break statement can be used in the following scenarios:
O for loop (For loop & nested for loop.
O While (while loop & nested while loop).
O Do while (do while loop and nested while loop)

O Switch case (Switch cases and nested switch cases)

¥

True

Conditional
Code

Qditiun

False

break
Statement

O

File Edit 3Search Run Compile Debug Project Options Window Help
[#]| = BREAK.C =l=[¢]?

int i,m,n:;

clrscr();
printf () -
scanf (,&n):
printf ();
scanf (,&m) ;
for(i=1:;i++)
{
if (i>n)
break:
printf (s1,m, i%m);
¥
getch():
X -
i

F1 Help Alt-F8 Next Msg Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

Enter the N value:10
Enter the M value:5

1 5 =25

Z * 5 =10
J*5 =15
4 = 5 = 20
D =5 =25
b » 5 = 30
? %5 = 35
8 * 5 = 40
9 %35 =45
10 * 5 = 50

Continue Statements

0 A Continue statement jumps out of the current loop condition and jumps
back to the starting of the loop code.

0 It is represented by continue;

0 Continue statement can be used in the following scenarios:
O for loop (For loop & nested for loop.
O While (while loop & nested while loop).
O Do while (do while loop and nested while loop)

O Switch case (Switch cases and nested switch cases)

Enter Loop

Tost False
»| Expression of
Loop
True
Yes Y
Statement just
below Loop
No
Remaining v

body of Loop

File Edit 3Search Run Compile Debug Project Options Window Help
[#]| = CONTINUE.C =1=[¢]?

int i,m,n:;

clrscr();
printf () -
scanf (,&n):
printf ();
scanf (,&m) ;
for(i=1:i<{=n;i++)
{
if (iz2==0)
continue:
printf (s1,m, i%m);
¥
getch():
T

F1 Help Alt-F8 Next Msg Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

Enter the N value:10
Enter the M value:5

1 5 =25

J»5 =15
2 % 0 = 25
? %3 =35
9 =5 =45

goto statement
e

0 The goto statement transfers the program control directly to a labeled
statement.

0 The label is the valid identifier and placed just before the statement
from where the control is transferred.

0 A common use of goto is to transfer control to a specific switch-case
label or the default label in a switch statement.

0 The goto statement is also useful to get out of deeply nested loops.

l

Statement 1

Y

Statement 2

Y

Statement 3

ot
statement

1

l

File Edit 3Search Run Compile Debug

[#]——— GOT0.C
void main()
i
int i=0,m,n:
clrscr();
printf () -
scanf (,&n):
printf ();
scanf (,&m) ;
start:
printf (yi,m, i%m);
1++;
if (i<=n)
goto start:
getch():
h

Project Options Window Help

1=[¢]?

F1 Help Alt-F8 Ne

Alt-F9 Compile FY9 Make F10 Menu

Enter the N value:10
Enter the M value:5

1 5 =25

Z * 5 =10
J*5 =15
4 = 5 = 20
D =5 =25
b » 5 = 30
? %5 = 35
8 * 5 = 40
9 %35 =45
10 * 5 = 50

ARRAYS IN C

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science
Adhiparasakthi College of Arts & Science,
Kalavai.

20-01-2022 Il Bsc Mathematics

Arrays-Introduction
152

0 The variables are used to store data. These variables are the one of the basic building
blocks in C.

0 A single variable is used to store a single value that can be used anywhere in the
memory.

0 In some situations, we need to store multiple values of the same type. In that case, it
needs multiple variables of the same data type. All the values are stored randomly
anywhere in the memory.

0 For example, to store the roll numbers of the 100 students, it needs 100 variables
named as rolll, roll2, roll3,....... roll1O0 . It becomes very difficult to declare 100
variables and store all the roll numbers.

0 In C, the concept of Array helps to store multiple values in a single variable.

0 An array is also a derived data type in C.

Arrays

0 “An array is a collection of variables of the same type that are referenced by a
common name”.

0 In an array, the values are stored in a fixed number of elements of the same type
sequentially in memory. Therefore, an integer array holds a sequence of integers; a
character array holds a sequence of characters, and so on.

0 Types of Array
O Single Dimensional Array
O Two Dimensional Array
O Multi Dimensional Array

0 A one dimensional array represents values that are stored in a single row or in @
single column.

O Syntax

0 Where, data_type declares the basic type of the array, which is the type of each
element in the array.

O array_name specifies the name with which the array will be referenced.

O array_size defines how many elements the array will hold. Size should be specified with
square brackets [].

Example:
int num[10];

0 In the above declaration, an array named “num” is declared with 10 elements
(memory space to store 10 different values) as integer type. To the above
declaration, the compiler allocated 10 memory locations (boxes) in the common
name “num”.

int num/[10];

0 1 2 3 4 5 6 7 8 9
subscripts

0 Each element (Memory box) has a unique index number starting from O which is
known as “subscript”.

0 The subscript always starts with O and it should be an unsigned integer value.

0 Each element of an array is referred by its name with subscript index within the
square bracket.

0 For example, num[3] refers to the 4th element in the array.

c6
0 Some more array declarations with various data types:
char emp_name[25]; // character array named emp_name with size 25
float salary[20]; // floating-point array named salary with size 20
int a[5], b[10], c[15]; // multiple arrays are declared of type int.

0 The amount of storage required to hold an array is directly related with type
and size.

Initialization

0 An array can be initialized at the time of its declaration. Unless an array is
initialized, all the array elements contain garbage valuves.

197

Initialization

An array can be initialized at the time of its declaration. Unless an array is initialized,
all the array elements contain garbage values.

Syntax:

<datatype> <array_name> [size| = {value-1,value-2,............... ,value-n};
Example

int age[5]={19,21,16,1,50};

In the above example, the array name is ‘age’ whose size is 5. In this case, the first
element 19 is stored in age[0], the second element 21 is stored in age[1] and so on as shown
in figure 12.1

0 While declaring and initializing values in

int age [5]={19,21,16.1,50); ’?I:eagai?/{/ LI}ES/:SIL;ees{shOLild be given within

0 The size of an array may be optional when
ol Bl el | s the array is initialized during declaration.
= = 2 b = Example:
g & & & & int age[]={ 19,21,16,1,50};
Figure 12.1 O In the above initialization, the size of the

array is not specified directly in the
declaration with initialization. So, the size is
determined by compiler which depends on
the total number of values. In this case, the
size of the array is five.

Accepting values to an array during run time :

0 Multiple assignment statements are required to insert values to the
cells of the array during runtime. The for loop is ideally suited for
iterating through the array elements.

0 In the following program, a for loop has been constructed to execute
the statements within the loop for 5 times.

0 During each iteration of the loop, cout statement prompts you to
“Enter value ” and cin gets the value and stores it in num([i];

File Edit 3Search Run Compile Debug Project Options Window Help

int i,numI51;
clrscr();

for(i=0;i<5:i++)
‘ printf (»1#1);
scanf (s&numlil);
;ur(i=0;i<5;i++)
‘ printf (si+l,mumlil);_
getch();}

¥

F1 Help Alt-F8 Ne Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

Enter
Enter
Enter
Enter
Enter

the
the
the
the
the

valuelll
valuelZ]
valuel3]
valuel4]
valuel5]

110
120
130
140
50

Entered Valuelll= 10
Entered ValuelZl= 20
Entered Valuel31= 30
Entered Valuel4l= 40
Entered Valuel5]1= 50

Accessing array elements

0 Array elements can be used anywhere in a program as we do in case of a
normal variable.

0 The elements of an array are accessed with the array name followed by the
subscript index within the square bracket.

Example:
cout<<numl[3];

0 In the above statement, num[3] refers to the 4th element of the array and cout
statement displays the value of num[3].

0 The subscript in bracket can be a variable, a constant or an expression that
evaluates to an integer.

File Edit 3Search Run Compile Debug Project Options Window Help

[# | ARRAY1.C =5=[¢]1

int numl51= {10,20,30,40,50};

int i=2;
clrscr();
printf (;humlZ]);
printf (snmuml3+11);
printf (snuml++i]);
getch():

¥

10:19
F1 Help Alt-¥ Alt-F9 Compile F9 Make F10 Menu

30
50
40 _

Two-dimensional array

0 Two-dimensional (2D) arrays

2D array conceptual memory representation
are collection of similar

Column subscript

elements where the elements -

are stored in certain number of 5| |arr[0] [0] |arr[0] [1] |arr[O] [3]

i
rows and columns. 2| larr[1] [0] |arr[1] [1] |arr[1][2]

o

0 An example m X n matrix v larr2] [0] [arr[2] [1] Jarr[2] [2]

Where m denOTeS The number Of The array arr can be coneptually viewed in matrix form
rFOW nd n denot the number with 3 rows and coloumns. point to be noted here is since
ows @ enores e nv € the subscript starts with 0 arr [0][0] represents the first
of columns. element.

int arr[3][3]; Figure 12.4

20
0 The declaration of a 2-D array is
data-type array_name[row-size][col-size];
0 In the above declaration, data-type refers to any valid C data-type, array_name
refers to the name of the 2-D array, row-size refers to the number of rows and col-
size refers to the number of columns in the 2-D array.
For example
int A[3][4];
0 In the above example, A is a 2-D array, 3 denotes the number of rows and 4

denotes the number of columns. This array can hold a maximum of 12 elements.

0 Array size must be an unsigned integer value which is greater than O. In arrays,
column size is compulsory but row size is optional.

A .

12.3.2 Initialization of Two-Dimensional array
The array can be initialized in more than one way at the time of 2-D array declaration.

For example

int matrix[4][3]={

{10,20,30},// Initializes row 0

{40,50,60},// Initializes row 1

{70,80,90},// Initializes row 2

{100,110,120}// Initializes row 3

I

int matrix[4][3]={10,20,30,40,50,60,70,80,90,100,110,120};

3
Array’s row size is optional but column size is compulsory.

int matrix[][3]={
{10,20,30},// row 0
{40,50,60},// row 1
{70,80,90},// row 2
{100,110,120}// row 3

b

12.3.3 Accessing the two-dimensional array

Two-dimensional array uses two index values to access a particular element in it, where the
first index specifies the row value and second index specifies the column value.

matrix[0][0]=10;// Assign 10 to the first element of the first row
matrix[0][1]=20;// Assign 20 to the second element of the first row

matrix[1][2]=60;// Assign 60 to the third element of the second row

12.3.4 Memory representation of 2-D array

Normally, the two-dimensional array can be viewed as a matrix. The conceptual view of a 2-D
array is shown below:

int A[4][3];
Alo][o] [Afo][1] [A[o][2]
Al1]fo] (A[L][1] A[1][2]
Al2][o] [A[2][1] |A[2][2]
Al3][o] [A[3][1] |A[3][2]

In the above example, the 2-D array name A has 4 rows and 3 columns.

Like one-dimensional, the 2-D array elements are stored in continuous memory.

File Edit 3Search Run Compile Debug Project Options Window Help
[#]——————— MATRIX.C =’?=[¢]?

int matAl101[101,1i, j,size,sum:;
clrscr();

matAlO1[O]= 10;

matAlO1[1]1= 20:;

matAl11[0]1= 30:;

matAl11[1]= 40;

printf (ymatAlO1[0]);

printf (ymatAlOI[1]):

printf (ymatAl11[0]);

printf (ysmatAl11011]1);
getch():

F1 Help Alt-F8 Ne Msg Alt-F9 Compile F9 Make F10 Menu

Value
Value
Value
Value

of ALOI[O]= 10
of ALOI[1]1= Z0O
of A[L11[0]= 30
of A[L11[1]1= 40_

= File Edit Search Run Compile Debug Project Options Window Help
[] MATRIXSU.C %ﬂﬂ?

void main()
i
int matAl101[101,1i, j,size,sum:;

clrscr();
printf () §-
scanf (,asize):
for(i=0;i<size:i++)
i
for(j=0; j<size:; j++)
i
printf (y1,§)
scanf (yamatAlill jl):
¥
hy
printf () B

F1 Help Alt-F8 Next Msg Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

File Edit Search Run

for(i=0;i{size;i++)

for(j=0; j<size: j++)

printf (smatAlill j1):
sum+=matAli1]1l j]:

1
sum=0;
i
¥
printf (
¥

printf () -
for(i=0;i<size;i++)
{

sum=0;

Compile Debug Project Options Window Help
MATRIXSU.C %ﬂﬂ?

,Sum);

for(j=0: j<size: j++)

1

sum+=matAl jl1[1]:

¥
printf (

;Sum);

Alt-F9 Compile FY9 Make F10 Menu

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

the
the
the
the
the
the
the
the
the
the

Size of the Matrix 3

Value
Value
Value
Value
Value
Value
Value
Value
Value

of
of
of
of
of
of
of
of
of

ALOILO]
ALOIL1]
ALOILZ]
AL11[O]
AC11[1]
AL11LZ]
ALZ1L0O]
ALZ1[1]
ALZ21LZ]

110
: 20
: 30
140
: 50
60
170
: 80
190

Entered Matrix Ualues are ...
20
50
80

10
10
70

120

150

30
bo
90

i n

180

60
150
240

Advantages of an Array in C:

Random access of elements using array index.

Use of less line of code as it creates a single array of multiple elements.
Easy access to all the elements.

Traversal through the array becomes easy using a single loop.

O O O o 0O

Sorting becomes easy as it can be accomplished by writing less line of code.
Disadvantages of an Array in C:

0 Allows a fixed number of elements to be entered which is decided at the time of
declaration. Unlike a linked list, an array in C is not dynamic.

0 Insertion and deletion of elements can be costly since the elements are needed to be
managed in accordance with the new memory allocation.

Multidimensional Arrays

0 In C, a 3d array is a multidimensional array used to store 3-dimensional information.
0 In simple words, a three-dimensional array is an array of arrays.

0 In three dimensional array, we have three rows and three columns.

0 In multidimensional arrays data in the form of a table, that is in row-major order.

0 The general syntax of a 3-dimensional array is as below.

data_type array_namel[sizel][size2][size3];

Example
int 3DArray[2][3][4];

0 where,3DArray is a three-dimensional array, having a maximum of 24 elements.

27 4

Columns

A
[1

Column 1 Column 2 Column 3

_
Row 1 111 ‘ 112 113
%) — B | |
gq Row 2 191 | 211 ‘ 212 ‘ 213
T 311 312 313
Row 3 131 22l
- 321 322 323
331 332 333

File Edit 3Search Run Compile Debug Project Options Window Help
[#]————— MILTI.C =‘9=[¢]?

int matAl101[101[10]1,1i, j,k,size:

clrscr();

printf () §-

scanf (yasize)d:

for(i=0;i<size;i++)

for(j=0; j<size; j++)

for(k=0;k<{size;k++)
{
printf (s 1, .k
scanf (s&matAlill j1lk1):
}

F1 Help Alt-F8 Next Msg Alt-F7 Prev Msg Al1t-F9 Compile F9 Make F10 Menu

= File Edit Search Run Compile Debug Project Options Window Help
[]| MILTI.C =‘9=[¢]1

printf (): o
for(i=0;i<size:i++) n
{ i

for(j=0; j<size:; j++)

{
for(k=0:;k<{size ;k++)
{
printf (smatAlilL j1[k]1):
T
printf (Jé
¥

printf ().

F1 Help Alt-F8 Next Msg Alt-F7 Prev Msg Alt-F9 Compile F9 Make F

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

the
the
the
the
the
the
the
the
the

Size of the Matrix 2

110
20
130
140
150
160
70
180

Value
Value
Value
Value
Value
Value
Value
Value

of
of
of
of
of
of
of
of

ALOIL[O]1IO]
ALOILOIL1]
ALOIL1]1[O]
ALOIC11[1]
AL11[0]1[0]
AL11[O1[1]
AL11[11[0O]
AC11011011]

Entered Matrix Ualues are ...
10
30

10
70

20
40

bo
80

Program Exercise
221

1. To Calculate the sum of positive numbers in an array.
2. To count the number of odd and even numbers in an array.

3. To perform Matrix Addition and Matrix Subtraction

File Edit 3Search Run Compile Debug Project Options Window Help
[#]| = POSARRAY.C =[¢]?

int numbers[301,size,i, sum=0;
clrscr();

printf () §-
scanf (,y&size) .

for(i=0i{size:i++)

i
printf ():
scanf (s&numberslil):
if (hnumberslil>0O)
sum+=numberslil;
¥
printf (;Sum) ;
getch():

¥

F1 Help Alt-F8 Ne Alt-F9 Compile FY9 Make F10 Menu

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

the
the
the
the
the
the
the
the
the
the
the

Size of the Matrix:10
-10
A
e 10
110
:20
: 24
130
140
150
-5
Sum of the Positive numbers in an Array is :

Values
Values
Values
Values
Values
Values
Values
Values
Values
Values

174

Run Compile Debug Project Options Window Help
[#]| = 0DDARRAY.C =1=[¢]?

int numbers(3ifl,size, i, oddcount=0,evencount=0;
clrscr();

printf () §-

scanf (yasize)d:

for(i=0;i<size;i++)

i

printf ();
scanf (sdnumberslil):
if ((humbers[i] » 2)==0)
evencount++;
else
oddcount ++;

¥
printf (»oddcount) ;
printf (,evencount) ;
getch();
¥

F1 Help FZ Save F3 Open

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

the
the
the
the
the
the
the
the
the
the
the

Size of the Matrix:10

Values
Values
Values
Values
Values
Values
Values
Values
Values
Values

Total number of
Total number of

101
12
ied
: 34
45
:56
67
178
:89
190

Odd Numbers in an Array is
Even Numbers in an Array is

: o
PO

= File Edit Search Run Compile Debug Project Options
[]——— MATADD.C

#include<stdio.h>

#tinc lude<conio.h>

void main()

{
int matAl201020]1, matBLZ21[20],matCL201[20]1,matDL[2]1[20]:
int size,i, j:

clrscr();

printf ():
scanf (,&size):
printf () J-
for(i=0;i<size:;i++)
i
for(j=0; j<size: j++)
i
printf (y1,)
scanf (y&matAlill jl):
¥

Window Help

2=[¢]?

File Edit 3Search Run Compile Debug Project Options

printf (
for(i=0;i<size;i++)
1
for(j=0: j<size: j++)
i
printf (
scanf (’
¥
¥
for(i=0;i<size;i++)
{
for(j=0; j<size: j++)
i
matCLil[jl=
matDLill jl=
¥
¥

MATADD .C

&matBLillj1);

matALill jl+matBLillj1;
matALilljl-matBLillj1;

i,)

Window Help

1t-F9 Compile F9 Mike F1

getch();
¥

F1 Help

62 :41

File Edit 3Search Run Compile Debug Project Options

MATADD .C

printf ()]
for(i=0:i<size;i++)
i
for(j=0: j<size: j++)
i
printf (smatCLillj1):
¥
printf ().
¥
printf ();
for(i=0;i<size:;i++)
i
for(j=0; j<size: j++)
i
printf (smatDLillj1):
¥
printf ();
¥

Alt-F8 Next Msg Alt-F? Prev Msg Alt-FI9 Compile F9

Window Help

2=[¢]TE

Enter the Size of the Matrix :

Enter the Matrix A values :
Enter the UValuel®@l[O] :1
Enter the Ualuel®l[1]1 :2
Enter the Ualuel1l[O]1 :3
Enter the Valuellll1l] :4

Enter the Matrix B ualues -
Enter the Ualuel®l[O]
Enter the UValuel®]1[1]
Enter the UaluellllO]
Enter the Ualuelll[1]

S NN

Addition of Two Matrix
5 5
5 5

subtraction of Two Matrix
-3 -1
1 3

FUNCTIONS IN C

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science
Adhiparasakthi College of Arts & Science,
Kalavai.

24-01-2022 Il Bsc Mathematics

Functions
IS .,

0 A function is a group of statements that together perform a task.

0 For example, Let’s consider you are writing a large C program and, in that
program you want to do a particular task several number of times, like
displaying value from 1 to 10, in order to do that you have to write few
lines of code and you need to repeat these lines every time you display
values.

0 Another way of doing this is that you write these lines inside a function and
call that function every time you want to display values. This would make
you code simple, readable and reusable.

0 A large program can typically be split into small sub-programs (blocks) called as functions
where each sub-program can perform some specific functionality.

0 Functions reduce the size and complexity of a program, makes it easier to understand, test,
and check for errors.

0 The functions which are available by default known as “Built-in” functions and user can
create their own functions known as “User-defined” functions.

0 To reduce size and complexity of the program we use Functions. The programmers can make
use of sub programs either writing their own functions or calling them from standard library.

0 Few lines of code may be repeatedly used in different contexts. Duplication of the same
code can be eliminated by using functions which improves the maintenance and reduce
program size.

0 Some functions can be called multiple times with different inputs.

0 Every C program has at least one function, which is main(), and all the most
trivial programs can define additional functions.

0 You can divide up your code into separate functions. How you divide up your
code among different functions is up to you, but logically the division usually is
such that each function performs a specific task.

0 Syntax of Function

Types of Function
234 |

0 C++ Supports two types of function.
O Built in Functions

0 User Defined Functions

|Types of functions in C++

v e

User
Built-in
Finciioas Defined

Functions

0 Built-in functions are also known as library functions.

0 Functions such as puts(), gets(), printf(), scanf() etc are standard library functions.
These functions are already defined in header files (files with .h extensions are
called header files such as stdio.h), so we just call them whenever there is a need to

use them.

0 For example, printf() function is defined in <stdio.h> header file so in order to use
the printf() function, we need to include the <stdio.h> header file in our program
using #include <stdio.h>.

User Defined Functions
26 4

0 User Defined Functions: The functions that we declare and write in our
programs are user-defined functions.

void Display(l{‘(

—)

Function call

int main() {

Display():
//Statements after function call

Function Declaration

e 4

0 A function declaration tells the compiler about a function name and how to
call the function. The actual body of the function can be defined separately.

0 A function declaration has the following parts —

return_type function_name(parameter list);

0 For the above defined function max(), following is the function declaration —

int max(int, int);

0 Parameter names are not important in function declaration only their type is
required, so following is also valid declaration

= File Edit 3Search Run Compile Debug Project Options Window Help

[#]| FORWFUNC . ———1=[1]
#include<stdio.h>
#tinc lude<conio.h>

int add(int a,int b)

i
return(a+b);
H
void main()
1
int valuel,valued:
clrscr();
printf () -
scanf (y&valuel)d:
printf ():
scanf (ydvalued):
printf (’
valuel,valueZ,add(valuel,value2)):
getch();
y

-F9 Compile F9 Make F10 Men

Enter the Valuel :25
Enter the Value 2:30
The Sum of Given (£5,30) is 55_

= File Edit Search Run Compile Debug Project Options Window Help
[#]| = BACKFUNC.C =l=[¢]?

#tinclude<conio.h>
int add(int, int):
void main()

1
int valuel,valuel:
clrscr();
printf ():
scanf (yavaluel):
printf ();
scanf (yavaluel):
printf (’
valuel,valued,add(valuel,valued)):
getch():
y
int add(int a,int b)
1
return(a+bh);
y

F1 Help Alt-F8 Ne Compile F9 Make F10 Men

Enter the Valuel :255
Enter the Value 2:300
The Sum of Given (255,300) is 555

Function Definition
242 QB

0 A Function Definition provides the actual body of the function.

0 The general form of a C function definition is as follows —

return_type function_name(parameter list)

{

body of the function

}

0 A C function definition consists of a function header and a function body. Here are all the
parts of a function

0 Return Type — A function may return a value. The return_type is the data type of the
value the function returns. Some functions perform the desired operations without
returning a value. In this case, the return_type is the keyword void.

0 Function Name — This is the actual name of the function. The function name and the
parameter list together constitute the function signature.

O Parameters — A parameter is like a placeholder. When a function is invoked, you pass a
value to the parameter. This value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the parameters of a function.
Parameters are optional; that is, a function may contain no parameters.

O Function Body — The function body contains a collection of statements that define what
the function does.

= File Edit 3Search Run Compile Debug Project Options Window Help

BACKFUNC .C 1
#include<stdio.h>
#include<conio.h>
int add(int, int):
void main()
i
int valuel,valueZ:
clrscr():
printf () I
scanf (yavaluel):
printf ();
scanf (yavalued):
printf (;
valuel,valueZ,add(valuel,valuel)):;
getch():
T

Compiling BACKFUNC.C:

Warning BACKFUNC.C 18: Uoid functions may not return a value

F1 Help Space View

0

Edit sourc® F10 Menu

Calling a Function
o2

0 While creating a C function, you give a definition of what the function has to
do. To use a function, you will have to call or invoke that function.

0 When a program calls a function, program control is transferred to the called
function. A called function performs defined task and when it’s return
statement is executed or when its function-ending closing brace is reached, it
returns program control back to the main program.

0 To call a function, you simply need to pass the required parameters along
with function name, and if function returns a value, then you can store returned
value.

Function Arguments
246

0 If a function is to use arguments, it must declare variables that accept
the values of the arguments. These variables are called the formal
parameters of the function.

0 The formal parameters behave like other local variables inside the
function and are created upon entry into the function and destroyed

upon exit.

0 While calling a function, there are two ways that arguments can be
passed to a function —

o Call by Value
O Call by Reference

0 Call by Value : This method copies the actual value of an argument into
the formal parameter of the function. In this case, changes made to the
parameter inside the function have no effect on the argument.

0 Call by Reference: This method copies the reference of an argument
into the formal parameter. Inside the function, the reference is used to
access the actual argument used in the call. This means that changes
made to the parameter affect the argument.

Call by Value

0 The call by value method of passing arguments to a function copies the
actual value of an argument into the formal parameter of the function.
In this case, changes made to the parameter inside the function have no
effect on the argument.

0 By default, C uses call by value to pass arguments. In general, this
means that code within a function cannot alter the arguments used to call

the function.

File Edit 3Search Run Compile Debug

UAL .C

void swap(int x,int y)d:
void main()

i

¥

int valuel,valuel:

printf ();
scanf (yavaluel):

printf ();
scanf (y&valued):

printf (

swap(valuel,valued):

printf (

void swap(int a,int b)

1

int c:
c= b
b=a:
a=c.
printf (

20:73

F1 Help Alt-F8 Ne

Project Options

2=[¢]?

yvaluel,valuel):

svaluel,valuel):

sa,b);

Alt-F9 Compile F9 Mal

Window Help

Enter the Valuel :100
Enter the Value 2:200

The Given values are (100,200)
The Value of A and B inside Function is (Z200,100)
Af ter Swapping given values are (100,200) _

Call by Reference
L e

0 The call by reference method of passing arguments to a function copies
the reference of an argument into the formal parameter.

0 Inside the function, the reference is used to access the actual argument
used in the call. This means that changes made to the parameter affect
the passed argument.

0 To pass the value by reference, argument reference is passed to the
functions just like any other value. So accordingly you need to declare
the function parameters as reference types as in the following function
swap(), which exchanges the values of the two integer variables pointed
to by its arguments.

= File Edit Search Run Compile Debug Project Options Window Help

[#]———— REF.(———moeee—""2=[1]
void swap(intx=, int=>); =§

void main()
{
int valuel,valueZ:
printf ();
scanf (y&valuel):
printf ();
scanf (y&valuel)
printf (yvaluel,valuel);
swap (&valuel, &valuel):
printf (svaluel,value):

¥
void swap(int =a,int =b)
i

int c:
c=xh;
sh=a ;
*A=C
printf (2%, %b) ;

5 Bt |

F1 Help Alt-F8 Ne

Enter the Valuel :100
Enter the Value 2:200

The Given values are (100,200)
The Value of A and B inside Function is (Z200,100)
Af ter Swapping given values are (200,100)

Types of Function
254 [N

0 A function depending upon the arguments present or not and whether a value
is returned or not , maybe classified as

O Function with no arguments and no return values.
O Function with no arguments and having return values.
O Function with arguments and no return values.

O Function with arguments and having return values.

Function with no arguments and no return values
B

0 When a function has no arguments, it does not receive any data from the calling function,
similarly when a function has no return values, the calling function does not receive any data
from the called function.

0 Hence, there is no data transfer between the calling function and the called function.

0 Those functions are used to perform any operation, they read the input and display the output
in same block.

0 In the following example, main() is the calling function which calls the function add().

0 The function add() receives it data directly from keyboard and displays the output directly to
the screen in the function itself, so there is no need of return statement.

0 The closing brace of the function indicates the end of the execution of the function, thus
returning the control back to the calling function.

0 The keyword void is used before the function add() to indicate that there are no return values.

File Edit 3Search Run Compile Debug Project Options Window Help
[]—— TYPELl.(———4=[1]
/7 Addition of Two Numbers
/7 Function with no arguments and no return value

add();

int valuel,valued:

printf ():

scanf (;ydvaluel):

printf ():

scanf (yavaluel) :

printf (svaluel+valued):

i

F1 Help Alt-F8 Ne 1t-F9 Compile F9 Make F10 Men

Enter the Value 1:10
Enter the VUalue 2:20
The Addition of given two values are :30

Function with no argument and having return values
B

0 When a function has no arguments, it does not receive any data from the calling
function, but it can do some process and then return the result to the called function.
Hence, there is data transfer between the calling function and the called function.

0 In the below program, main() is the calling function which calls the function add().

0 The function add() contains no arguments and receives it data directly from
keyboard.

0 The return statement is employed in this function to return the sum of given two
numbers calculated and the result is displayed from the main() to the standard
output device.

0 The keyword int is used before the function add() to indicate that it returns a value
of type int to the called function.

= File Edit Search Run Compile Debug Project Options Window Help

/7 Addition of Two Numbers

/7 Function with no arguments and having return value =§

int add():
void main()
1
clrscr();
printf (yadd());
getch():
H
int add()
i
int valuel,valued:
printf ():
scanf (;ydvaluel):
printf ():
scanf (yavaluel):

return({valuel+valuel):

F1 Help Alt-F8 Next Msg Alt-F?/ 1t-F9 Compile F9 Make F10 Menu

Enter the Value 1:10
Enter the VUalue 2:20
The Addition of given two values are :30

Function with arguments but no return value

0 When a function has arguments, it receive any data from the calling
function but it returns no values.

0 In the below program, main() is the calling function which calls the function

add().

0 The function receives two arguments of type int from the calling function
(main()) after calculating the sum of two numbers, it displays the output
directly to the screen in the function itself, so there is no need of return
statement.

0 The closing brace of the function indicates the end of the execution of
the function, thus returning the control back to the calling function.

0 The keyword void is used before the function add() to indicate that there
are no return values.

= File Edit Search Run Compile Debug Project Options Window Help

/7 Addition of Two Numbers
/7 Function with arguments and no return value

L e ——— b ¢ i 5 Y O =‘l=[¢]?

1
int valuel,value?:
clrscr();
printf ():
scanf (ydvaluel)d:
printf ();
scanf (yavaluel)
add(valuel,valuel):
getch():
y
woid add(int a,int b)
1
printf (satbh);
y

F1 Help Alt-F8 Next Msg Alt-F?/ 1t-F9 Compile F9 Make

Enter the Value 1:10
Enter the VUalue 2:20
The Addition of given two values are :30

Function with arguments and return value
264

0 Function with arguments and return value means both the calling function and
called function will receive data from each other. It’s like a dual
communication.

0 In the below program, main() is the calling function which calls the function
add().

0 The function receives two arguments of type int from the calling function
(main()) after calculating the sum of two numbers, The return statement is
employed in this function to return the sum of given two numbers calculated
and the result is displayed from the main() to the standard output device.

0 The keyword int is used before the function add() to indicate that it returns a
value of type int to the called function.

= File Edit Search Run Compile Debug Project Options Window Help
[8]—————— TYPE4.C =4=[¢]?

/7 Addition of Two Numbers
/7 Function with arguments and return value

int add(int,int):
void main()

i
int valuel,valued:
clrscr();
printf ():
scanf (;&valuel):
printf ();
scanf (yavaluel) : =
printf (,add(valuel,value2)):
getch():
¥
int add(int a,int b)
i
return(a+b);
¥

F1 Help Alt-F8 Ne 1t-F9 Compileg F9 Make F10 Men

Enter the Value 1:200
Enter the Value 2:234
The Addition of given two values are :434

Constant Arguments

.S
ne constant variable can be declared using const keyword.

ne const keyword makes variable value stable.

T
T
The constant variable should be initialized while declaring.
T

O O 0O 0O

ne const modifier enables to assign an initial value to a variable
that cannot be changed later inside the body of the function.

Syntax :
<returntype><functionname> (const <datatype variable=value>)
Example:

int minimum(const int a=10);
float area(const float pi=3.14, int r=5);

File Edit 3Search Run Compile Debug Project Options Window Help

[#]|———— CONSTFUN.(——5=[1]
double area(const double r) =§
i

return(. 1dxpxr);
3
void main()
i
double radius, result:;
clrscr();
printf ():
scanf (y&radius);
printf (,areal(radius));
getch();
3

F1 Help Alt-F8 Ne

Enter the Radius UValue:5

The Area of Circle= 78.5_

