
 

 

U3CA22MT  

DATA STRUCTURES AND  COMPUTER ALGORITHMS   

UNIT: I 

Definition of a Data structure: 

A data structure is a specialized format for organizing and storing data. General data 
structure types include the array, the file, the record, the table, the tree, and so on. Any data 
structure is designed to organize data to suit a specific purpose so that it can be accessed and 
worked with in appropriate ways. 

Data Structure is a way of collecting and organizing data in such a way that we can perform 
operations on these data in an effective way. Data Structures is about rendering data elements in 
terms of some relationship, for better organization and storage. 

ADT (Abstract data type): 

Abstract data type are like user defined data type on which we can perform functions without 
knowing what is there inside the data type and how the operations are performed on them . As 
the information is not exposed it’s abstracted. 
 
Stack and queue are not a data type they are way of implementing a data structure , but they are 
called as abstract DATA TYPE because we can do operations on datatype only not on function , here 
in stack and queue we can do operation like pop , push , enqueue etc. and its ABSTRACT because 
we are not given information about what is there inside the stack or queue , here we call function for 
doing operations without knowing what stuffs there in the stack or queue , functions will know what 
is inside and do the job when called. as all the information is not given only required info is given so 
its abstract. 
 
Now we’ll define three ADTs namely List ADT, Stack ADT, Queue ADT. 
 
List ADT 
 
A list contains elements of same type arranged in sequential order and following operations can 
be performed on the list. 
 
get() – Return an element from the list at any given position. 
insert() – Insert an element at any position of the list. 
remove() – Remove the first occurrence of any element from a non-empty list. 
removeAt() – Remove the element at a specified location from a non-empty list. 
replace() – Replace an element at any position by another element. 
size() – Return the number of elements in the list. 
isEmpty() – Return true if the list is empty, otherwise return false. 
isFull() – Return true if the list is full, otherwise return false. 
 



 

 

Stack ADT 
 
A Stack contains elements of same type arranged in sequential order. All operations takes place 
at a single end that is top of the stack and following operations can be performed: 
 
push() – Insert an element at one end of the stack called top. 
pop() – Remove and return the element at the top of the stack, if it is not empty. 
peek() – Return the element at the top of the stack without removing it, if the stack is not empty. 
size() – Return the number of elements in the stack. 
isEmpty() – Return true if the stack is empty, otherwise return false. 
isFull() – Return true if the stack is full, otherwise return false. 
 
Queue ADT 
 
A Queue contains elements of same type arranged in sequential order. Operations takes place at 
both ends, insertion is done at end and deletion is done at front. Following operations can be 
performed: 
 
enqueue() – Insert an element at the end of the queue. 
dequeue() – Remove and return the first element of queue, if the queue is not empty. 
peek() – Return the element of the queue without removing it, if the queue is not empty. 
size() – Return the number of elements in the queue. 
isEmpty() – Return true if the queue is empty, otherwise return false. 
isFull() – Return true if the queue is full, otherwise return false. 
 
From these definitions, we can clearly see that the definitions do not specify how these ADTs 
will be represented and how the operations will be carried out. There can be different ways to 
implement an ADT, for example, the List ADT can be implemented using arrays, or singly 
linked list or doubly linked list. Similarly, stack ADT and Queue ADT can be implemented using 
arrays or linked lists. 

Primitive and Composite data types: 

Primitive data type is either of the following: a basic type is a data type provided by a 
programming language as a basic building block. Most languages allow more 
complicated composite types to be recursively constructed starting from basic types. 

 A composite data type or compound data type is any data type which can be constructed in a 
program using the programming language's primitive data types and other composite types. It is 
sometimes called a structure or aggregate data type, although the latter term may also refer 
to arrays, lists, etc. 

Arrars: 

Array is a container which can hold a fix number of items and these items should be of the same 

type. Most of the data structures make use of arrays to implement their algorithms. Following 

are the important terms to understand the concept of Array. 



 

 

 Element − Each item stored in an array is called an element. 

 Index − Each location of an element in an array has a numerical index, which is used to identify the 

element. 

Array Representation: 

Arrays can be declared in various ways in different languages. For illustration, let's take C array 

declaration. 

 

Arrays can be declared in various ways in different languages. For illustration, let's take C array 
declaration. 

 

As per the above illustration, following are the important points to be considered. 

 Index starts with 0. 

 Array length is 10 which means it can store 10 elements. 

 Each element can be accessed via its index. For example, we can fetch an element at 

index 6 as 9. 

Basic Operations: 

Following are the basic operations supported by an array. 

 Traverse − print all the array elements one by one. 

 Insertion − Adds an element at the given index. 

 Deletion − Deletes an element at the given index. 

 Search − Searches an element using the given index or by the value. 

 Update − Updates an element at the given index. 



 

 

In C, when an array is initialized with size, then it assigns defaults values to its elements in 

following order. 

Data Type Default Value 

bool false 

char 0 

int 0 

float 0.0 

double 0.0f 

void 
  

 

Insertion Operation 

Insert operation is to insert one or more data elements into an array. Based on the requirement, a 

new element can be added at the beginning, end, or any given index of array. 

Example 

Algorithm 

Let Array be a linear unordered array of MAX elements. 

Let LA be a Linear Array (unordered) with N elements and K is a positive integer such 
that K<=N. Following is the algorithm where ITEM is inserted into the Kth position of LA – 

1. Start 
2. Set J = N 
3. Set N = N+1 
4. Repeat steps 5 and 6 while J >= K 
5. Set LA[J+1] = LA[J] 
6. Set J = J-1 
7. Set LA[K] = ITEM 
8. Stop 

Deletion Operation 

Deletion refers to removing an existing element from the array and re-organizing all elements of 

an array. 



 

 

Algorithm 

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. 

Following is the algorithm to delete an element available at the Kth position of LA. 

1. Start 
2. Set J = K 
3. Repeat steps 4 and 5 while J < N 
4. Set LA[J] = LA[J + 1] 
5. Set J = J+1 
6. Set N = N-1 
7. Stop 

Search Operation 

You can perform a search for an array element based on its value or its index. 

Algorithm 

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. 

Following is the algorithm to find an element with a value of ITEM using sequential search. 

1. Start 
2. Set J = 0 
3. Repeat steps 4 and 5 while J < N 
4. IF LA[J] is equal ITEM THEN GOTO STEP 6 
5. Set J = J +1 
6. PRINT J, ITEM 
7. Stop 

 

Update Operation 

Update operation refers to updating an existing element from the array at a given index. 

Algorithm 

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. 

Following is the algorithm to update an element available at the Kth position of LA. 

1. Start 
2. Set LA[K-1] = ITEM 
3. Stop 

Ordered List: 

The structure of an ordered list is a collection of items where each item holds a relative position that is based 
upon some underlying characteristic of the item. The ordering is typically either ascending or descending and 
we assume that list items have a meaningful comparison operation that is already defined. Many of the ordered 
list operations are the same as those of the unordered list. 

 



 

 

UNIT: II 

Stack ADT: 

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is 
named stack as it behaves like a real-world stack, for example – a deck of cards or a pile of 
plates, etc. 

A real-world stack allows operations at one end only. For example, we can place or remove a 

card or plate from the top of the stack only. Likewise, Stack ADT allows all data operations at 

one end only. At any given time, we can only access the top element of a stack. 

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element 

which is placed (inserted or added) last, is accessed first. In stack terminology, insertion 

operation is called PUSH operation and removal operation is called POP operation. 

 

we are going to implement stack using arrays, which makes it a fixed size stack implementation. 

Basic Operations 

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart 

from these basic stuffs, a stack is used for the following two primary operations − 

 push() − Pushing (storing) an element on the stack. 

 pop() − Removing (accessing) an element from the stack. 

 



 

 

When data is PUSHed onto stack. 

Push Operation 

The process of putting a new data element onto stack is known as a Push Operation. Push 

operation involves a series of steps − 

Step 1 − Checks if the stack is full. 
Step 2 − If the stack is full, produces an error and exit. 
Step 3 − If the stack is not full, increments top to point next empty space. 
Step 4 − Adds data element to the stack location, where top is pointing. 
Step 5 − Returns success. 
 

 

Algorithm for PUSH Operation 
 
begin procedure push: stack, data 
   if stack is full 
      return null 
   endif 
   top ← top + 1 
   stack[top] ← data 
end procedure 

Pop Operation 
Accessing the content while removing it from the stack, is known as a Pop Operation. In an array 
implementation of pop() operation, the data element is not actually removed, instead top is 
decremented to a lower position in the stack to point to the next value. But in linked-list 
implementation, pop() actually removes data element and deallocates memory space. 

A Pop operation may involve the following steps − 

Step 1 − Checks if the stack is empty. 
Step 2 − If the stack is empty, produces an error and exit. 
Step 3 − If the stack is not empty, accesses the data element at which top is pointing. 
Step 4 − Decreases the value of top by 1. 
Step 5 − Returns success. 



 

 

 

Algorithm for Pop Operation 
 
begin procedure pop: stack 
   if stack is empty 
      return null 
   endif 
      data ← stack[top] 
   top ← top - 1 
   return data 
end procedure 
 
Infix to Postfix Conversion: 
 
Any expression can be represented using three types of expressions (Infix, Postfix, and Prefix). 
We can also convert one type of expression to another type of expression like Infix to Postfix, 
Infix to Prefix, Postfix to Prefix and vice versa. 
 
To convert any Infix expression into Postfix or Prefix expression we can use the following 
procedure... 
Find all the operators in the given Infix Expression. 
Find the order of operators evaluated according to their Operator precedence. 
Convert each operator into required type of expression (Postfix or Prefix) in the same order. 
 
Example 
Consider the following Infix Expression to be converted into Postfix Expression... 

Infix expression                                                 Postfix expression  

D = A + B * C                                D A B C * + = 



 

 

Infix to Postfix Conversion using Stack Data Structure 

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the 
following steps... 

1. Scan the infix expression from left to right. 
2. If the scanned character is an operand, output it. 
3. Else, 
…..3.1 If the precedence of the scanned operator is greater than the precedence of the operator in 
the stack(or the stack is empty or the stack contains a ‘(‘ ), push it. 
…..3.2 Else, Pop all the operators from the stack which are greater than or equal to in precedence 
than that of the scanned operator. After doing that Push the scanned operator to the stack. (If you 
encounter parenthesis while popping then stop there and push the scanned operator in the stack.) 
4. If the scanned character is an ‘(‘, push it to the stack. 
5. If the scanned character is an ‘)’, pop the stack and and output it until a ‘(‘ is encountered, and 
discard both the parenthesis. 
6. Repeat steps 2-6 until infix expression is scanned. 
7. Print the output 
8. Pop and output from the stack until it is not empty. 

QUEUE ADT 
Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is open at 
both its ends. One end is always used to insert data (enqueue) and the other is used to remove 
data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored first will 
be accessed first. 
As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and 
Structures. For the sake of simplicity, we shall implement queues using one-dimensional array. 

Basic Operations 

Queue operations may involve initializing or defining the queue, utilizing it, and then 

completely erasing it from the memory. Here we shall try to understand the basic operations 

associated with queues − 

 enqueue() − add (store) an item to the queue. 

 dequeue() − remove (access) an item from the queue. 

Few more functions are required to make the above-mentioned queue operation efficient.  

These are − 

 peek() − Gets the element at the front of the queue without removing it. 

 isfull() − Checks if the queue is full. 

 isempty() − Checks if the queue is empty. 

 



 

 

In queue, we always dequeue (or access) data, pointed by front pointer and while enqueing (or 
storing) data in the queue we take help of rear pointer. 

Enqueue Operation 

Queues maintain two data pointers, front and rear. Therefore, its operations are comparatively 

difficult to implement than that of stacks. 

The following steps should be taken to enqueue (insert) data into a queue − 

 Step 1 − Check if the queue is full. 

 Step 2 − If the queue is full, produce overflow error and exit. 

 Step 3 − If the queue is not full, increment rear pointer to point the next empty space. 

 Step 4 − Add data element to the queue location, where the rear is pointing. 

 Step 5 − return success. 

 

Algorithm for enqueue operation 
procedure enqueue(data)       
      if queue is full 
      return overflow 
   endif 
    
   rear ← rear + 1 
   queue[rear] ← data 
   return true 
end procedure 
 



 

 

Dequeue Operation 

Accessing data from the queue is a process of two tasks − access the data where front is 

pointing and remove the data after access. The following steps are taken to 

perform dequeue operation − 

 Step 1 − Check if the queue is empty. 

 Step 2 − If the queue is empty, produce underflow error and exit. 

 Step 3 − If the queue is not empty, access the data where front is pointing. 

 Step 4 − Increment front pointer to point to the next available data element. 

 Step 5 − Return success. 

 

 

Algorithm for dequeue operation 
procedure dequeue 
     if queue is empty 
      return underflow 
   end if 
 
   data = queue[front] 
   front ← front + 1 
   return true 
 
end procedure 



 

 

TYPES OF QUEUE 

There are three types of queue: 
 Circular Queue 
 Priority Queue 
 Deque 
 
1. Simple Queue 
Simple queue defines the simple operation of queue in which insertion occurs at the rear of the 
list and deletion occurs at the front of the list. 

 

2. Circular  Queue 
A circular queue is one in which the insertion of a element is done at the very first location if the 
queue if the last location of the queue is full. New element can be inserted if and only if the those 
location are empty For example, if we have a queue Q of say n elements , then after inserting an 
element at last location (i.e in the n-1th) location of the array the next element will be inserted at 
the very first location( i.e at 0th location) of the array. 

 

A circular queue also have a front and rear to keep the track of the elements to  be deleted and 
inserted and therefore to maintain the unique characteristic of the queue. 
 Following are the assumption  made: 



 

 

 Front will always be pointing to the first element 
 If front=rear the queue will be empty 
 Each time a new element is inserted into the queue the rear is incremented by one 

rear=rear+1 
 Each time a new element is deleted from  the queue the value of front is incremented by 

one, front=front+1 
 

3. Priority Queue 
 
Priority queue is a collection of elements such that each element has been assigned a priority and 
the order in which elements are deleted and processed comes from following rules: 
 An element of higher priority is processed before any elements of lower priority 
 Two elements with the same priority are processed according to the order in which they 

were added to the queue. 
An example of priority queue in computer science occurs in timesharing system in which the 
processes of higher priority is executed before any process of lower priority. 
There are two types of priority queue: 
 Ascending priority queue : It is a collection of items in to which items can be inserted 

arbitrarily and from which only the smallest item can be removed. 
 Descending priority queue : It is similar but allows deletion of only the largest item. 
 
4. Double Ended Queue i.e Deque 
  
It is also a homogeneous list of elements in which insertion and deletion operations are 
performed from both the ends. That is, we can insert elements from the rear end or from the front 
end. Hence, it is called Double-Ended Queue.  There are two types of deques. These two types 
are due to the restrictions put to perform either the insertions or deletions only at one end. 
 

 
 
 Input restricted deques : Input restricted deques allows insertions at only one end of the 

array or list but deletions allows at both ends. 
 Output restricted deques : Output restricted deques allows deletions at only one end of 

the array or list but insertions allow at both ends. 
 

List ADT: 

A linked list is a sequence of data structures, which are connected together via links. 

Linked List is a sequence of links which contains items. Each link contains a connection to 

another link. Linked list is the second most-used data structure after array. Following are the 

important terms to understand the concept of Linked List. 



 

 

 Link − Each link of a linked list can store a data called an element. 

 Next − Each link of a linked list contains a link to the next link called Next. 

 LinkedList − A Linked List contains the connection link to the first link called First. 

Linked List Representation 

Linked list can be visualized as a chain of nodes, where every node points to the next node. 

 

As per the above illustration, following are the important points to be considered. 

 Linked List contains a link element called first. 

 Each link carries a data field(s) and a link field called next. 

 Each link is linked with its next link using its next link. 

 Last link carries a link as null to mark the end of the list. 

Types of Linked List 

Following are the various types of linked list. 

 Simple Linked List − Item navigation is forward only. 

 Doubly Linked List − Items can be navigated forward and backward. 

 Circular Linked List − Last item contains link of the first element as next and the first 

element has a link to the last element as previous. 

Basic Operations 

Following are the basic operations supported by a list. 

 Insertion − Adds an element at the beginning of the list. 

 Deletion − Deletes an element at the beginning of the list. 

 Display − Displays the complete list. 

 Search − Searches an element using the given key. 

 Delete − Deletes an element using the given key.  



 

 

Insertion Operation 

Adding a new node in linked list is a more than one step activity. We shall learn this with 

diagrams here. First, create a node using the same structure and find the location where it has to 

be inserted. 

 

Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C (RightNode). 
Then point B.next to C – 

 

Now, the next node at the left should point to the new node. 

 

This will put the new node in the middle of the two. The new list should look like this – 

 

Similar steps should be taken if the node is being inserted at the beginning of the list. While 

inserting it at the end, the second last node of the list should point to the new node and the new 

node will point to NULL. 



 

 

Deletion Operation 

Deletion is also a more than one step process. We shall learn with pictorial representation. First, 

locate the target node to be removed, by using searching algorithms. 

 

The left (previous) node of the target node now should point to the next node of the target node – 

 

This will remove the link that was pointing to the target node. Now, using the following code, we 
will remove what the target node is pointing at. 

 

We need to use the deleted node. We can keep that in memory otherwise we 
can simply deallocate memory and wipe off the target node completely. 

 

 

Doubly Linked List 

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways, 

either forward and backward easily as compared to Single Linked List. Following are the 

important terms to understand the concept of doubly linked list. 



 

 

 Link − Each link of a linked list can store a data called an element. 

 Next − Each link of a linked list contains a link to the next link called Next. 

 Prev − Each link of a linked list contains a link to the previous link called Prev. 

 LinkedList − A Linked List contains the connection link to the first link called First and 

to the last link called Last. 

Doubly Linked List Representation 

 

As per the above illustration, following are the important points to be considered. 

 Doubly Linked List contains a link element called first and last. 

 Each link carries a data field(s) and two link fields called next and prev. 

 Each link is linked with its next link using its next link. 

 Each link is linked with its previous link using its previous link. 

 The last link carries a link as null to mark the end of the list. 

Basic Operations 

Following are the basic operations supported by a list. 

 Insertion − Adds an element at the beginning of the list. 

 Deletion − Deletes an element at the beginning of the list. 

 Insert Last − Adds an element at the end of the list. 

 Delete Last − Deletes an element from the end of the list. 

 Insert After − Adds an element after an item of the list. 

 Delete − Deletes an element from the list using the key. 

 Display forward − Displays the complete list in a forward manner. 

 Display backward − Displays the complete list in a backward manner. 

 



 

 

Insertion Operation 

Following code demonstrates the insertion operation at the beginning of a doubly linked list. 

Example 
//insert link at the first location 
void insertFirst(int key, int data) { 
 
   //create a link 
   struct node *link = (struct node*) malloc(sizeof(struct node)); 
   link->key = key; 
   link->data = data; 
  
   if(isEmpty()) { 
      //make it the last link 
      last = link; 
   } else { 
      //update first prev link 
      head->prev = link; 
   } 
 
   //point it to old first link 
   link->next = head; 
  
   //point first to new first link 
   head = link; 
} 

Deletion Operation 

Following code demonstrates the deletion operation at the beginning of a 
doubly linked list. 

Example 
//delete first item 
struct node* deleteFirst() { 
 
   //save reference to first link 
   struct node *tempLink = head; 
  
   //if only one link 
   if(head->next == NULL) { 
      last = NULL; 
   } else { 
      head->next->prev = NULL; 
   } 
  
   head = head->next; 
  
   //return the deleted link 
   return tempLink; 
} 



 

 

Insertion at the End of an Operation 

Following code demonstrates the insertion operation at the last position of a doubly linked list. 

Example 
//insert link at the last location 
void insertLast(int key, int data) { 
 
   //create a link 
   struct node *link = (struct node*) malloc(sizeof(struct node)); 
   link->key = key; 
   link->data = data; 
  
   if(isEmpty()) { 
      //make it the last link 
      last = link; 
   } else { 
      //make link a new last link 
      last->next = link;      
       
      //mark old last node as prev of new link 
      link->prev = last; 
   } 
 
   //point last to new last node 
   last = link; 
} 

Circular Linked List 

Circular Linked List is a variation of Linked list in which the first element points to the last 

element and the last element points to the first element. Both Singly Linked List and Doubly 

Linked List can be made into a circular linked list. 

Singly Linked List as Circular 

In singly linked list, the next pointer of the last node points to the first node. 

 

Doubly Linked List as Circular 

In doubly linked list, the next pointer of the last node points to the first 
node and the previous pointer of the first node points to the last node 
making the circular in both directions. 



 

 

 

As per the above illustration, following are the important points to be considered. 

 The last link's next points to the first link of the list in both cases of singly as well as 

doubly linked list. 

 The first link's previous points to the last of the list in case of doubly linked list. 

Basic Operations 

Following are the important operations supported by a circular list. 

 insert − Inserts an element at the start of the list. 

 delete − Deletes an element from the start of the list. 

 display − Displays the list. 

Insertion Operation 

Following code demonstrates the insertion operation in a circular linked list based on single 

linked list. 

Example 
//insert link at the first location 
void insertFirst(int key, int data) { 
   //create a link 
   struct node *link = (struct node*) malloc(sizeof(struct node)); 
   link->key = key; 
   link->data= data; 
  
   if (isEmpty()) { 
      head = link; 
      head->next = head; 
   } else { 
      //point it to old first node 
      link->next = head; 
   
      //point first to new first node 
      head = link; 
   }    
} 

 

 



 

 

Deletion Operation 

Following code demonstrates the deletion operation in a circular linked list based on single 

linked list. 

//delete first item 
struct node * deleteFirst() { 
   //save reference to first link 
   struct node *tempLink = head; 
  
   if(head->next == head) {   
      head = NULL; 
      return tempLink; 
   }      
   //mark next to first link as first  
   head = head->next; 
  
   //return the deleted link 
   return tempLink; 
} 

Display List Operation 

Following code demonstrates the display list operation in a circular linked list. 

//display the list 
void printList() { 
   struct node *ptr = head; 
   printf("\n[ "); 
   //start from the beginning 
   if(head != NULL) { 
      while(ptr->next != ptr) {      
         printf("(%d,%d) ",ptr->key,ptr->data); 
         ptr = ptr->next; 
      } 
   } 
   printf(" ]"); 
} 
Adding two polynomials using Linked List 

Given two polynomial numbers represented by a linked list. Write a function that add these lists 
means add the coefficients who have same variable powers. 

Example: 

Input: 
     1st number = 5x^2 + 4x^1 + 2x^0 
     2nd number = 5x^1 + 5x^0 
 
Output: 
        5x^2 + 9x^1 + 7x^0 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT: III 

Trees 

Tree terminology 

 

1 Root 

2 Edge 

3 Parent 

4 Child 

5 Siblings 

6 Degree 

7 Internal Node 

8 Leaf Node 

9 Level 

10 Height 

11 Depth 

12 Sub Tree 

13 Forest 

 

Tree Traversal 

Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all 

nodes are connected via edges (links) we always start from the root (head) node. That is, we 

cannot randomly access a node in a tree. There are three ways which we use to traverse a tree − 

 Pre-order Traversal 

 In-order Traversal 

 Post-order Traversal 

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the 

values it contains. 



 

 

 

 

Preorder (Root, Left, Right)  : 1 2 4 5 3 

Inorder   (Left, Root, Right)   : 4 2 5 1 3 

Postorder (Left, Right, Root) : 4 5 2 3 1 

 

 

Binary Search Trees 

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned 

properties − 

 The left sub-tree of a node has a key less than or equal to its parent node's key. 

 The right sub-tree of a node has a key greater than to its parent node's key. 

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-tree and 

can be defined as − 

left_subtree (keys)  ≤  node (key)  ≤  right_subtree (keys) 

Representation 

BST is a collection of nodes arranged in a way where they maintain BST properties. Each node 

has a key and an associated value. While searching, the desired key is compared to the keys in 

BST and if found, the associated value is retrieved. 

Following is a pictorial representation of BST – 

 

 

 



 

 

Basic Operations 

Following are the basic operations of a tree − 

 Search − Searches an element in a tree. 
 Insert − Inserts an element in a tree. 
 Pre-order Traversal − Traverses a tree in a pre-order manner. 
 In-order Traversal − Traverses a tree in an in-order manner. 
 Post-order Traversal − Traverses a tree in a post-order manner. 

Node 

Define a node having some data, references to its left and right child nodes. 

struct node 
 { 
   int data;    
   struct node *leftChild; 
   struct node *rightChild; 
}; 

Search Operation 

Whenever an element is to be searched, start searching from the root node. Then if the data is 

less than the key value, search for the element in the left subtree. Otherwise, search for the 

element in the right subtree. Follow the same algorithm for each node. 

Algorithm 
struct node* search(int data){ 
   struct node *current = root; 
   printf("Visiting elements: "); 
   while(current->data != data){ 
      if(current != NULL) { 
         printf("%d ",current->data); 
         //go to left tree 
         if(current->data > data){ 
            current = current->leftChild; 
         }  //else go to right tree 
         else {                 
            current = current->rightChild; 
         } 
         //not found 
         if(current == NULL){ 
            return NULL; 
         } 
      }    
   } 
    
   return current; 
} 



 

 

Insert Operation 

Whenever an element is to be inserted, first locate its proper location. Start searching from the 

root node, then if the data is less than the key value, search for the empty location in the left 

subtree and insert the data. Otherwise, search for the empty location in the right subtree and 

insert the data. 

Algorithm 
void insert(int data) { 
   struct node *tempNode = (struct node*) malloc(sizeof(struct node)); 
   struct node *current; 
   struct node *parent; 
 
   tempNode->data = data; 
   tempNode->leftChild = NULL; 
   tempNode->rightChild = NULL; 
 
   //if tree is empty 
   if(root == NULL) { 
      root = tempNode; 
   } else { 
      current = root; 
      parent = NULL; 
 
      while(1) {                 
         parent = current; 
    
         //go to left of the tree 
         if(data < parent->data) { 
            current = current->leftChild;                 
            //insert to the left 
     
            if(current == NULL) { 
               parent->leftChild = tempNode; 
               return; 
            } 
         }  //go to right of the tree 
         else { 
            current = current->rightChild; 
//insert to the right 
            if(current == NULL) { 
               parent->rightChild = tempNode; 
               return; 
            } 
         } 
      }             
   } 
}         

 



 

 

AVL Trees 

What if the input to binary search tree comes in a sorted (ascending or descending) manner? It 

will then look like this – 

 

It is observed that BST's worst-case performance is closest to linear search algorithms, that is 

Ο(n). In real-time data, we cannot predict data pattern and their frequencies. So, a need arises to 

balance out the existing BST. 

Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing binary 

search tree. AVL tree checks the height of the left and the right sub-trees and assures that the 

difference is not more than 1. This difference is called the Balance Factor. 

Here we see that the first tree is balanced and the next two trees are not balanced − 

 

In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so the 

difference is 2. In the third tree, the right subtree of A has height 2 and the left is missing, so it 

is 0, and the difference is 2 again. AVL tree permits difference (balance factor) to be only 1. 

BalanceFactor = height(left-sutree) − height(right-sutree) 

If the difference in the height of left and right sub-trees is more than 1, the tree is balanced using 

some rotation techniques. 



 

 

AVL Rotations 

To balance itself, an AVL tree may perform the following four kinds of rotations − 

 Left rotation 
 Right rotation 
 Left-Right rotation 
 Right-Left rotation 
 The first two rotations are single rotations and the next two rotations are double rotations. 

To have an unbalanced tree, we at least need a tree of height 2. With this simple tree, let's 
understand them one by one. 

Left Rotation 

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right 

subtree, then we perform a single left rotation − 

 

In our example, node A has become unbalanced as a node is inserted in the right subtree of A's 

right subtree. We perform the left rotation by making Athe left-subtree of B. 

Right Rotation 

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left subtree. 

The tree then needs a right rotation. 

 

As depicted, the unbalanced node becomes the right child of its left child by performing a right 

rotation. 



 

 

Left-Right Rotation 

Double rotations are slightly complex version of already explained versions of rotations. To 

understand them better, we should take note of each action performed while rotation. Let's first 

check how to perform Left-Right rotation. A left-right rotation is a combination of left rotation 

followed by right rotation. 

State Action 

 

A node has been inserted into the right subtree of the left 
subtree. This makes C an unbalanced node. These 
scenarios cause AVL tree to perform left-right rotation. 

 

We first perform the left rotation on the left subtree of C. 
This makes A, the left subtree of B. 

 

Node C is still unbalanced, however now, it is because of 
the left-subtree of the left-subtree. 

 

We shall now right-rotate the tree, making B the new 
root node of this subtree. C now becomes the right 
subtree of its own left subtree. 

 

The tree is now balanced. 



 

 

Right-Left Rotation 

The second type of double rotation is Right-Left Rotation. It is a combination of right rotation 

followed by left rotation. 

State Action 

 

A node has been inserted into the left subtree of the right 
subtree. This makes A, an unbalanced node with balance 
factor 2. 

 

First, we perform the right rotation along C node, 
making C the right subtree of its own left subtree B. 
Now, B becomes the right subtree of A. 

 

Node A is still unbalanced because of the right subtree of 
its right subtree and requires a left rotation. 

 

A left rotation is performed by making B the new root 
node of the subtree. A becomes the left subtree of its 
right subtree B. 

 

The tree is now balanced. 



 

 

B-Tree 

B-Tree is a self-balancing search tree. In most of the other self-balancing search trees 
(like AVL and Red-Black Trees), it is assumed that everything is in main memory. To 
understand the use of B-Trees, we must think of the huge amount of data that cannot fit in main 
memory. When the number of keys is high, the data is read from disk in the form of blocks. Disk 
access time is very high compared to main memory access time. The main idea of using B-Trees 
is to reduce the number of disk accesses. Most of the tree operations (search, insert, delete, max, 
min, ..etc ) require O(h) disk accesses where h is the height of the tree. B-tree is a fat tree. The 
height of B-Trees is kept low by putting maximum possible keys in a B-Tree node. Generally, a 
B-Tree node size is kept equal to the disk block size. Since h is low for B-Tree, total disk 
accesses for most of the operations are reduced significantly compared to balanced Binary 
Search Trees like AVL Tree, Red-Black Tree, ..etc. 
 
Properties of B-Tree 
 
1) All leaves are at same level. 
2) A B-Tree is defined by the term minimum degree ‘t’. The value of t depends upon disk block 
size. 
3) Every node except root must contain at least t-1 keys. Root may contain minimum 1 key. 
4) All nodes (including root) may contain at most 2t – 1 keys. 
5) Number of children of a node is equal to the number of keys in it plus 1. 
6) All keys of a node are sorted in increasing order. The child between two keys k1 and k2 
contains all keys in the range from k1 and k2. 
7) B-Tree grows and shrinks from the root which is unlike Binary Search Tree. Binary Search 
Trees grow downward and also shrink from downward. 
8) Like other balanced Binary Search Trees, time complexity to search, insert and delete is 
O(Logn). 
 

Following is an example B-Tree of minimum degree 3. Note that in practical B-Trees, the value 

of minimum degree is much more than 3. 

 

 



 

 

Search 
Search is similar to the search in Binary Search Tree. Let the key to be searched be k. We start 
from the root and recursively traverse down. For every visited non-leaf node, if the node has the 
key, we simply return the node. Otherwise, we recur down to the appropriate child (The child 
which is just before the first greater key) of the node. If we reach a leaf node and don’t find k in 
the leaf node, we return NULL. 
 
Traverse 
Traversal is also similar to Inorder traversal of Binary Tree. We start from the leftmost child, 
recursively print the leftmost child, then repeat the same process for remaining children and 
keys. In the end, recursively print the rightmost child. 

 

Graphs: 

A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes 
also referred to as vertices and the edges are lines or arcs that connect any two nodes in the 
graph. More formally a Graph can be defined as, 

A Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair of 
nodes. 

 

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of edges E = {01, 12, 23, 34, 
04, 14, 13}. 

Graphs are used to solve many real-life problems. Graphs are used to represent networks. The 
networks may include paths in a city or telephone network or circuit network. Graphs are also 
used in social networks like linkedIn, Facebook. For example, in Facebook, each person is 
represented with a vertex(or node). Each node is a structure and contains information like person 
id, name, gender, locale etc. 

 

Undirected graphs have edges that do not have a direction. The edges indicate a two-

way relationship, in that each edge can be traversed in both directions. 

Directed graphs have edges with direction. The edges indicate a one-way relationship, in that 

each edge can only be traversed in a single direction.  



 

 

Depth First Search 

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack to 

remember to get the next vertex to start a search, when a dead end occurs in any iteration. 

 
As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, 

then to F and lastly to C. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack. 

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices 

from the stack, which do not have adjacent vertices.) 

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Step Traversal Description 

1 

 

Initialize the stack. 

2 

 

Mark S as visited and put it 
onto the stack. Explore any 
unvisited adjacent node 
from S. We have three nodes 
and we can pick any of them. 
For this example, we shall 
take the node in an 
alphabetical order. 



 

 

3 

 

Mark A as visited and put it 
onto the stack. Explore any 
unvisited adjacent node from 
A. Both Sand D are adjacent 
to A but we are concerned for 
unvisited nodes only. 

4 

 

Visit D and mark it as visited 
and put onto the stack. Here, 
we have B and C nodes, which 
are adjacent to D and both are 
unvisited. However, we shall 
again choose in an 
alphabetical order. 

5 

 

We choose B, mark it as 
visited and put onto the stack. 
Here Bdoes not have any 
unvisited adjacent node. So, 
we pop Bfrom the stack. 

6 

 

We check the stack top for 
return to the previous node 
and check if it has any 
unvisited nodes. Here, we 
find D to be on the top of the 
stack. 

7 

 

Only unvisited adjacent node 
is from D is C now. So we 
visit C, mark it as visited and 
put it onto the stack. 

As C does not have any unvisited adjacent node so we keep popping the 
stack until we find a node that has an unvisited adjacent node. In this case, 
there's none and we keep popping until the stack is empty. 



 

 

Breadth First Search 

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a 
queue to remember to get the next vertex to start a search, when a dead end occurs in any 

iteration. 

 
As in the example given above, BFS algorithm traverses from A to B to E to F first then to C 
and G lastly to D. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue. 

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 

Step Traversal Description 

1 

 

Initialize the queue. 

2 

 

We start from 
visiting S(starting node), 
and mark it as visited. 



 

 

3 

 

We then see an unvisited 
adjacent node from S. In 
this example, we have 
three nodes but 
alphabetically we choose A, 
mark it as visited and 
enqueue it. 

4 

 

Next, the unvisited 
adjacent node from S is B. 
We mark it as visited and 
enqueue it. 

5 

 

Next, the unvisited 
adjacent node from S is C. 
We mark it as visited and 
enqueue it. 

6 

 

Now, S is left with no 
unvisited adjacent nodes. 
So, we dequeue and find A. 

7 

 

From A we have D as 
unvisited adjacent node. 
We mark it as visited and 
enqueue it. 

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep 
on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the program is 

over. 



 

 

Dijkstra’s shortest path algorithm 

Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given 

graph. 

Dijkstra’s algorithm, We maintain two sets, one set contains vertices included in shortest path tree, other 
set includes vertices not yet included in shortest path tree. At every step of the algorithm, we find a vertex 
which is in the other set (set of not yet included) and has a minimum distance from the source. 

Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single source  
vertex to all other vertices in the given graph. 
 
Algorithm 
 
1) Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e., 
whose minimum distance from source is calculated and finalized. Initially, this set is empty. 
2) Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. 
Assign distance value as 0 for the source vertex so that it is picked first. 
3) While sptSet doesn’t include all vertices 
 
….a) Pick a vertex u which is not there in sptSet and has minimum distance value. 
….b) Include u to sptSet. 
 
….c) Update distance value of all adjacent vertices of u. To update the distance values, iterate through all 
adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of 
edge u-v, is less than the distance value of v, then update the distance value of v. 

 

The set sptSet is initially empty and distances assigned to vertices are {0, INF, INF, INF, INF, 
INF, INF, INF} where INF indicates infinite. Now pick the vertex with minimum distance value. 
The vertex 0 is picked, include it in sptSet. So sptSet becomes {0}. After including 0 to sptSet, 
update distance values of its adjacent vertices. Adjacent vertices of 0 are 1 and 7. The distance 
values of 1 and 7 are updated as 4 and 8. Following subgraph shows vertices and their distance 
values, only the vertices with finite distance values are shown. The vertices included in SPT are 
shown in green colour. 



 

 

 
Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). 
The vertex 1 is picked and added to sptSet. So sptSet now becomes {0, 1}. Update the distance 
values of adjacent vertices of 1. The distance value of vertex 2 becomes 12. 

 
Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). 
Vertex 7 is picked. So sptSet now becomes {0, 1, 7}. Update the distance values of adjacent 
vertices of 7. The distance value of vertex 6 and 8 becomes finite (15 and 9 respectively). 

 
Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). 
Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}. Update the distance values of adjacent 
vertices of 6. The distance value of vertex 5 and 8 are updated. 

 
We repeat the above steps until sptSet doesn’t include all vertices of given graph. Finally, we get 
the following Shortest Path Tree (SPT). 



 

 

 
 
Hashing  
 
Hash Table is a data structure which stores data in an associative manner. In a hash table, data is 
stored in an array format, where each data value has its own unique index value. Access of data 
becomes very fast if we know the index of the desired data. 
 
Thus, it becomes a data structure in which insertion and search operations are very fast 
irrespective of the size of the data. Hash Table uses an array as a storage medium and uses hash 
technique to generate an index where an element is to be inserted or is to be located from. 
 

Hashing is an important Data Structure which is designed to use a special function called the 
Hash function which is used to map a given value with a particular key for faster access of 
elements. The efficiency of mapping depends of the efficiency of the hash function used. 

Let a hash function H(x) maps the value  at the index x%10 in an Array. For example if the 
list of values is [11,12,13,14,15] it will be stored at positions {1,2,3,4,5} in the array or Hash 
table respectively. 

 

 

 

 

 

 

 



 

 

UNIT: IV 

What is an Algorithm? 

An algorithm is a step by step method of solving a problem. It is commonly used for data 

processing, calculation and other related computer and mathematical operations. 

An algorithm is a detailed series of instructions for carrying out an operation or solving a problem 

ALGORITHM SPECIFICATION  

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.  
All algorithms must satisfy the following criteria: Input.  
An algorithm has zero or more inputs, taken from a specified set of objects.  
Output. An algorithm has one or more outputs, which have a specified relation to the inputs.  
Definiteness. Each step must be precisely defined; Each instruction is clear and unambiguous.  
Finiteness. The algorithm must always terminate after a finite number of steps. 
Effectiveness. All operations to be performed must be sufficiently basic that they can be done 
exactly and in finite length.  

We can describe an algorithm in many ways.  

1. Natural language: use a natural language like English  
2.Flow charts: Graphic representations called flowcharts , only if the algorithm is small and 
simple.  
3.Pseudo-code: also avoids most issues of ambiguity; no particularity on syntax programming 
language  

Example 1: Algorithm for calculate factorial value of a number: 

 input a number n 
 set variable final as 1  
final <= final * n  
decrease n  
check if n is equal to 0  
if n is equal to zero, goto step 8 (break out of loop) 
 else goto step 3  
print the result final 
 
Algorithm Analysis 
 
 Efficiency of an algorithm can be analyzed at two different stages, before implementation and 
after implementation, as 
 
 A priori analysis − This is theoretical analysis of an algorithm. Efficiency of algorithm is 
measured by assuming that all other factors e.g. processor speed, are constant and have no effect 
on implementation.  
 
A posterior analysis − This is empirical analysis of an algorithm. The selected algorithm is 
implemented using programming language. This is then executed on target computer machine. In 
this analysis, actual statistics like running time and space required are collected.  



 

 

Algorithm analysis deals with the execution or running time of various operations involved. 
Running time of an operation can be defined as no. of computer instructions executed per 
operation. 
 
Algorithm Complexity 
 
 Suppose X is an algorithm and n is the size of input data, the time and space used by the 
Algorithm X are the two main factors which decide the efficiency of X. Time Factor − The time 
is measured by counting the number of key operations such as comparisons in sorting algorithm 
Space Factor − The space is measured by counting the maximum memory space required by the 
algorithm.  
 
The complexity of an algorithm f(n) gives the running time and / or storage space required by the 
algorithm in terms of n as the size of input data. 
 
 1)Space Complexity: 
 
 Space complexity of an algorithm represents the amount of memory space required by the 
algorithm in its life cycle. Space required by an algorithm is equal to the sum of the following 
two components: 
 
 A fixed part that is a space required to store certain data and variables, that are independent of 
the size of the problem. For example simple variables & constant used, program size etc. 
 
 A variable part is a space required by variables, whose size depends on the size of the problem. 
For example dynamic memory allocation, recursion stack space etc.  
 
Space complexity S(P) of any algorithm P is S(P) = C + SP(I) Where C is the fixed part and S(I) 
is the variable part of the algorithm which depends on instance characteristic I. Following is a 
simple example that tries to explain the concept. 
 
Algorithm: SUM(A, B)  
Step 1 - START  
Step 2 - C ← A + B + 10  
Step 3 – Stop 
 
Here we have three variables A, B and C and one constant. Hence S(P) = 1+3. Now space 
depends on data types of given variables and constant types and it will be multiplied accordingly. 
 
2)Time Complexity: 
 
Time Complexity of an algorithm represents the amount of time required by the algorithm to run 
to completion. Time requirements can be defined as a numerical function T(n), where T(n) can 
be measured as the number of steps, provided each step consumes constant time. 
 
For example, addition of two n-bit integers takes n steps. Consequently, the total computational 
time is T(n) = c*n, where c is the time taken for addition of two bits. Here, we observe that T(n) 
grows linearly as input size increases. 



 

 

Asymptotic Analysis: 
 
Asymptotic analysis of an algorithm, refers to defining the mathematical framing of its run-time 
performance. Using asymptotic analysis, we can conclude the best case, average case and worst 
case scenario of an algorithm. 
 
Asymptotic analysis are input bound i.e., if there's no input to the algorithm it is concluded to 
work in a constant time. Other than the "input" all other factors are considered constant. 
 
Asymptotic analysis refers to computing the running time of any operation in mathematical units 
of computation. For example, running time of one operation is computed as f(n) and may be for 
another operation it is computed as g(n2). Which means first operation running time will 
increase linearly with the increase in n and running time of second operation will increase 
exponentially when n increases. 
 
Usually, time required by an algorithm falls under three types –  
 
Best Case − Minimum time required for program execution.  
Average Case − Average time required for program execution.  
Worst Case − Maximum time required for program execution. 
 
Asymptotic Notations: 
 
Following are commonly used asymptotic notations used in calculating running time complexity 
of an algorithm. 
 
Ο(big O) Notation  
Ω (Omega)Notation  
θ (Theta)Notation  
 
Big Oh Notation, Ο: 
The Ο(n) is the way to express the upper bound of an algorithm's running time. It measures the 
worst case time complexity or longest amount of time an algorithm can possibly take to 
complete. 
 
Omega Notation, Ω:  
The Ω(n) is the way to express the lower bound of an algorithm's running time. It measures the 
best case time complexity or best amount of time an algorithm can possibly take to complete. 
 
Theta Notation, θ: 
 The θ(n) is the way to express both the lower bound and upper bound of an algorithm's running 
time. 
 
Common Asymptotic Notations : 
 
Constant  − Ο(1)  
Logarithmic  − Ο(log n)  
Linear   − Ο(n) 



 

 

n log n   − Ο(n log n) 
Quadratic  − Ο(n2) 
Cubic   − Ο(n3)  
Polynomial  − nΟ(1)  
Exponential  − Ο(2 n )  
 
Primality Testing 
 
A natural number N is said to be a prime number if it can be divided only by 1 and itself. 
Primality Testing is done to check if a number is a prime or not. The topic explains different 
algorithms available for primality testing. 

Basic Method: 

This is an approach that goes in a way to convert definition of prime numbers to code. It checks 
if any of the number less than a given number(N) divides the number or not. But on observing 
the factors of any number, this method can be limited to check only till N. This is because, 
product of any two numbers greater than N can never be equal to N. A C++ function for basic 
method is shown below. 

int PrimeTest(int N) 
{ 
    for (int i = 2; i*i <= N; ++i) 
    { 
        if(N%i == 0) 
        { 
            return 0; 
        } 
    } 
    return 1; 
} 
 
The function returns 1 if N is a prime number and 0 for a composite number. This function runs 
with a complexity of O(n). That implies, this method can at most be used for numbers of 
range 1015 to 1016 to determine if it's a prime or not in reasonable amount of time. 
 
Two examples of primality testing 
 
1) Fermat Primality Testing 
2) Miller-Rabin Primality Testing 
 
 
 
 
 
 
 
 



 

 

Searching: 
 
Linear search 
 
Linear search is a very simple search algorithm. In this type of search, a sequential search is 
made over all items one by one. Every item is checked and if a match is found then that 
particular item is returned, otherwise the search continues till the end of the data collection. 
 

 
Algorithm 

Linear Search ( Array A, Value x) 
 
Step 1: Set i to 1 
Step 2: if i > n then go to step 7 
Step 3: if A[i] = x then go to step 6 
Step 4: Set i to i + 1 
Step 5: Go to Step 2 
Step 6: Print Element x Found at index i and go to step 8 
Step 7: Print element not found 
Step 8: Exit 

 
Binary search 
Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search 
algorithm works on the principle of divide and conquer. For this algorithm to work properly, the 

data collection should be in the sorted form. 

Binary search looks for a particular item by comparing the middle most item of the collection. If 
a match occurs, then the index of item is returned. If the middle item is greater than the item, 

then the item is searched in the sub-array to the left of the middle item. Otherwise, the item is 
searched for in the sub-array to the right of the middle item. This process continues on the sub-
array as well until the size of the sub array reduces to zero. 

How Binary Search Works? 

For a binary search to work, it is mandatory for the target array to be sorted. We shall learn the 
process of binary search with a pictorial example. The following is our sorted array and let us 
assume that we need to search the location of value 31 using binary search. 

 



 

 

 
First, we shall determine half of the array by using this formula − 

mid = low + (high - low) / 2 

Here it is, 0 + (9 - 0 ) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array. 

 
Now we compare the value stored at location 4, with the value being searched, i.e. 31. We find 

that the value at location 4 is 27, which is not a match. As the value is greater than 27 and we 
have a sorted array, so we also know that the target value must be in the upper portion of the 
array. 

 
We change our low to mid + 1 and find the new mid value again. 

low = mid + 1 
mid = low + (high - low) / 2 

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31. 

 
The value stored at location 7 is not a match, rather it is more than what we are looking for. So, 
the value must be in the lower part from this location. 

 
Hence, we calculate the mid again. This time it is 5. 



 

 

 
We compare the value stored at location 5 with our target value. We find that it is a match. 

 
We conclude that the target value 31 is stored at location 5. 

Binary search halves the searchable items and thus reduces the count of comparisons to be made 

to very less numbers. 

 
Sorting : 
 
Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to 

arrange data in a particular order. Most common orders are in numerical or lexicographical 
order. 

The importance of sorting lies in the fact that data searching can be optimized to a very high 

level, if data is stored in a sorted manner. Sorting is also used to represent data in more readable 
formats. Following are some of the examples of sorting in real-life scenarios − 

 Telephone Directory − The telephone directory stores the telephone numbers of people 

sorted by their names, so that the names can be searched easily. 

 Dictionary − The dictionary stores words in an alphabetical order so that searching of 
any word becomes easy. 

Merge sort 
 
Merge sort is a sorting technique based on divide and conquer technique. With worst-case time 
complexity being Ο(n log n), it is one of the most respected algorithms. 

Merge sort first divides the array into equal halves and then combines them in a sorted manner. 

How Merge Sort Works? 

To understand merge sort, we take an unsorted array as the following − 

 



 

 

We know that merge sort first divides the whole array iteratively into equal halves unless the 
atomic values are achieved. We see here that an array of 8 items is divided into two arrays of 

size 4. 

 

This does not change the sequence of appearance of items in the original. Now we divide these 
two arrays into halves. 

 

We further divide these arrays and we achieve atomic value which can no more be divided. 

 

Now, we combine them in exactly the same manner as they were broken down. Please note the 

color codes given to these lists. 

We first compare the element for each list and then combine them into another list in a sorted 
manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and in the target 

list of 2 values we put 10 first, followed by 27. We change the order of 19 and 35 whereas 42 
and 44 are placed sequentially. 

 

In the next iteration of the combining phase, we compare lists of two data values, and merge 
them into a list of found data values placing all in a sorted order. 

 

After the final merging, the list should look like this − 

 

Now we should learn some programming aspects of merge sorting. 



 

 

Algorithm 
Merge sort keeps on dividing the list into equal halves until it can no more be divided. By 
definition, if it is only one element in the list, it is sorted. Then, merge sort combines the smaller 

sorted lists keeping the new list sorted too. 

Step 1 − if it is only one element in the list it is already sorted, return. 
Step 2 − divide the list recursively into two halves until it can no more be divided. 
Step 3 − merge the smaller lists into new list in sorted order. 

 
Quick Sort 
 

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of data 

into smaller arrays. A large array is partitioned into two arrays one of which holds values 

smaller than the specified value, say pivot, based on which the partition is made and another 

array holds values greater than the pivot value. 

Quick sort partitions an array and then calls itself recursively twice to sort the two resulting 

subarrays. This algorithm is quite efficient for large-sized data sets as its average and worst case 

complexity are of Ο(n2), where n is the number of items. 

Partition in Quick Sort 

Following animated representation explains how to find the pivot value in an array. 

 
The pivot value divides the list into two parts. And recursively, we find the pivot for each sub-

lists until all lists contains only one element. 

Quick Sort Pivot Algorithm 

Based on our understanding of partitioning in quick sort, we will now try to write an algorithm 

for it, which is as follows. 

Step 1 − Choose the highest index value has pivot 
Step 2 − Take two variables to point left and right of the list excluding pivot 
Step 3 − left points to the low index 



 

 

Step 4 − right points to the high 
Step 5 − while value at left is less than pivot move right 
Step 6 − while value at right is greater than pivot move left 
Step 7 − if both step 5 and step 6 does not match swap left and right 
Step 8 − if left ≥ right, the point where they met is new pivot 

 

Quick Sort Algorithm 

Using pivot algorithm recursively, we end up with smaller possible partitions. Each partition is 

then processed for quick sort. We define recursive algorithm for quicksort as follows − 

Step 1 − Make the right-most index value pivot 
Step 2 − partition the array using pivot value 
Step 3 − quicksort left partition recursively 
Step 4 − quicksort right partition recursively 

 
External Sorting 

External sorting is a term for a class of sorting algorithms that can handle massive amounts of 
data. External sorting is required when the data being sorted do not fit into the main memory of a 
computing device (usually RAM) and instead they must reside in the slower external memory 
(usually a hard drive). External sorting typically uses a hybrid sort-merge strategy. In the sorting 
phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a 
temporary file. In the merge phase, the sorted sub-files are combined into a single larger file. 

One example of external sorting is the external merge sort algorithm, which sorts chunks that 
each fit in RAM, then merges the sorted chunks together. We first divide the file into runs such 
that the size of a run is small enough to fit into main memory. Then sort each run in main 
memory using merge sort sorting algorithm. Finally merge the resulting runs together into 
successively bigger runs, until the file is sorted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Unit V 
 
Greedy Method: 
 
Greedy algorithms build a solution part by part, choosing the next part in such a way, that it 
gives an immediate benefit. This approach never reconsiders the choices taken previously. This 
approach is mainly used to solve optimization problems. 
 

Knapsack Problem 
Given a set of items, each with a weight and a value, determine a subset of items to include in a 
collection so that the total weight is less than or equal to a given limit and the total value is as 
large as possible. 
 
The knapsack problem is in combinatorial optimization problem. It appears as a subproblem in 
many, more complex mathematical models of real-world problems. One general approach to 
difficult problems is to identify the most restrictive constraint, ignore the others, solve a 
knapsack problem, and somehow adjust the solution to satisfy the ignored constraints. 

Problem Scenario 
A thief is robbing a store and can carry a maximal weight of Winto his knapsack. There are n 
items available in the store and weight of ith item is wi and its profit is pi. What items should the 
thief take? 
 
In this context, the items should be selected in such a way that the thief will carry those items for 
which he will gain maximum profit. Hence, the objective of the thief is to maximize the profit. 
 

Example 
 

Let us consider that the capacity of the knapsack W = 60 and the list of provided items are shown 
in the following table  
 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (piwi)(piwi) 7 10 6 5 

 

As the provided items are not sorted based on pi/wi. After sorting, the items are as shown in the 

following table. 



 

 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio (piwi)(piwi) 10 7 6 5 

Solution 

After sorting all the items according to pi/wi. First all of B is chosen as weight of B is less than 

the capacity of the knapsack. Next, item A is chosen, as the available capacity of the knapsack is 

greater than the weight of A. Now, C is chosen as the next item. However, the whole item 

cannot be chosen as the remaining capacity of the knapsack is less than the weight of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item can be 

selected. 

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

This is the optimal solution. We cannot gain more profit selecting any different combination of 

items. 

 
Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)  
for i = 1 to n  
   do x[i] = 0  
weight = 0  
for i = 1 to n  
   if weight + w[i] ≤ W then   
      x[i] = 1  
      weight = weight + w[i]  
   else  
      x[i] = (W - weight) / w[i]  
      weight = W  
      break  
return x 

 
 

 



 

 

A spanning tree is a subset of an undirected Graph that has all the vertices connected by 
minimum number of edges. 
 
If all the vertices are connected in a graph, then there exists at least one spanning tree. In a graph, 
there may exist more than one spanning tree. 
 
Properties 
A spanning tree does not have any cycle. 
Any vertex can be reached from any other vertex. 
Example 
In the following graph, the highlighted edges form a spanning tree. 

 

Minimum Spanning Tree 
A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted undirected 
graph that connects all the vertices together with the minimum possible total edge weight. To 
derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used. Hence, we will discuss 
Prim’s algorithm in this chapter. 
 
As we have discussed, one graph may have more than one spanning tree. If there are n number of 
vertices, the spanning tree should have n - 1 number of edges. In this context, if each edge of the 
graph is associated with a weight and there exists more than one spanning tree, we need to find 
the minimum spanning tree of the graph. 
 
Moreover, if there exist any duplicate weighted edges, the graph may have multiple minimum 
spanning tree. 

 



 

 

In the above graph, we have shown a spanning tree though it’s not the minimum spanning tree. 
The cost of this spanning tree is (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) = 38. 

We will use Prim’s algorithm to find the minimum spanning tree. 

Prim’s Algorithm 
Prim’s algorithm is a greedy approach to find the minimum spanning tree. In this algorithm, to 
form a MST we can start from an arbitrary vertex. 

Algorithm: MST-Prim’s (G, w, r)  
for each u є G.V  
   u.key = ∞  
   u.∏ = NIL  
r.key = 0  
Q = G.V  
while Q ≠ Ф  
   u = Extract-Min (Q)  
   for each v є G.adj[u]  
      if each v є Q and w(u, v) < v.key  
         v.∏ = u  
         v.key = w(u, v)  

The function Extract-Min returns the vertex with minimum edge cost. This function works on 
min-heap. 

Example 
Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1. 

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is added to the 
spanning tree. 

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2, 3), (3, 4), (3, 7)}. 

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is selected at 
random. 

In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9)are selected. As all the vertices are 
visited, now the algorithm stops. 

The cost of the spanning tree is (2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23. There is no more spanning 
tree in this graph with cost less than 23. 

 



 

 

Travelling salesman problem 

 

Problem Statement 

 
A traveler needs to visit all the cities from a list, where distances between all the cities are 
known and each city should be visited just once. What is the shortest possible route that he 
visits each city exactly once and returns to the origin city? 

Solution 

 
Travelling salesman problem is the most notorious computational problem. We can use brute-
force approach to evaluate every possible tour and select the best one. For n number of vertices 
in a graph, there are (n - 1)! number of possibilities. 

Instead of brute-force using dynamic programming approach, the solution can be obtained in 
lesser time, though there is no polynomial time algorithm. 

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted edges. 
An edge e(u, v) represents that vertices u and v are connected. Distance between vertex u 
and v is d(u, v), which should be non-negative. 

Suppose we have started at city 1 and after visiting some cities now we are in city j. Hence, this 
is a partial tour. We certainly need to know j, since this will determine which cities are most 
convenient to visit next. We also need to know all the cities visited so far, so that we don't 
repeat any of them. Hence, this is an appropriate sub-problem. 

Example 

In the following example, we will illustrate the steps to solve the travelling salesman problem. 

 

 
 

From the above graph, the following table is prepared. 

 

 



 

 

 1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

 
 
 
Algorithm: Traveling-Salesman-Problem  
C ({1}, 1) = 0  
for s = 2 to n do  
   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  
      C (S, 1) = ∞  
   for all j Є S and j ≠ 1  
      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  
Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  

 

Backtracking Algorithms 

Backtracking is an algorithmic-technique for solving problems recursively by trying to build a 
solution incrementally, one piece at a time, removing those solutions that fail to satisfy the 
constraints of the problem at any point of time (by time, here, is referred to the time elapsed till 
reaching any level of the search tree). 

8 queen problem 

The eight queens problem is the problem of placing eight queens on an 8×8 chessboard such that 
none of them attack one another (no two are in the same row, column, or diagonal). More 
generally, the n queens problem places n queens on an n×n chessboard. 

Algorithm 
 
isValid(board, row, col) 
Input: The chess board, row and the column of the board. 
Output: True when placing a queen in row and place position is a valid or not. 
 
 
 



 

 

Begin 
   if there is a queen at the left of current col, then 
      return false 
   if there is a queen at the left upper diagonal, then 
      return false 
   if there is a queen at the left lower diagonal, then 
      return false; 
   return true //otherwise it is valid place 
End 

NQueen(board, col) 

Input: The chess board, the col where the queen is trying to be placed. 

Output: The position matrix where queens are placed. 

Begin 

   if all columns are filled, then 

      return true 

   for each row of the board, do 

      if isValid(board, i, col), then 

         set queen at place (i, col) in the board 

         if solveNQueen(board, col+1) = true, then 

            return true 

         otherwise remove queen from place (i, col) from board. 

   done 

   return false 

End 

 
 


