
OPEN SOURCE PROGRAMMING

SUBJECT CODE: U5CA22MT

Introduction : Linux Essential
Commands – File system Concept –
Standard Files – The Linux Security
Model – Vi Editor – Partitions
Creation – Shell Introduction –
String Processing– Investigation
and Managing Processes – Network
Clients – Installing Application.



Difference between OSS and Proprietary S/W

OSS 

• Permits Users to study, change and Improve

• Redistribute the s/w without restriction

• Access the source code

• Modify the source code

• Distribute the modified version of the s/w.

Proprietary  s/w

• Non free software

• Copy Right (License)

• Usually not allow their source code to modify.



Advantages of Open Sources
Lower Costs
oUsually not require licensing fee
oSmall Businesses easily choose to adopt

Flexibility
oA programmer modify to better suit its needs

oAdd new function or remove function
High-Quality Software
oSource code available and well designed



Reduces “Vendor Lock-in”
oIf you are using proprietary s/w they may 

restricted
oIndependent of vendors in OSS.
Simple License Management
oNo worry about licenses
oYou can install several times from any 
location
Abundant Support
oMost organization gives support and 
maintenance



Disadvantages of open source

Support

o One disadvantage to open source involves 
frequently  poor support 

Documentation

o Many open source products were poorly 
documented - or not documented at all.

Complexity

o Difficult to learn and administer when 
problems occurs



Advertising
o Annoying advertising components may be another 

factor which takes the 

Advantages of proprietary software
o Single vendor

o Professional interface

o Routine updates

o Integration across products

Disadvantages of proprietary software
o Products can be bulky

o Cost surprises



Applications of open source softwares
There are over 480 OSS application to use or build 

upon.
Accounting

Adaptive Planning Express- An  enabling medium 
sized companies to automate budgeting and 
forecasting

Buddi - A simple budgeting program for users with 
no financial background

CheckInOut – Railway Applications

To manage money accounts



CRM(Customer Relationship Management)

OpenCRM :

Tracking clients and project management 

OPenCRX:

Bug tracking and activity management features

Graphics –Design & Modeling Tools

Flowchart Studio – User to draw a flowchart 
through graphical editor

Media Player

Mplayer – Written in Python 



Need of Open sources

• Free Redistribution

• Source Code

• Derived Works

• No Discrimination against Persons or Groups

• License must not be specific to a product

• License must not restrict other software

• License must be technology - Neutral



Examples Of Open Source Software
• Apache HTTP Server [http://httpd.apache.org/] (web server)
• GNOME [http://www.gnome.org/] (Linux desktop environment)
• GNU Compiler Collection 

[http://www.gnu.org/software/gcc/gcc.html] (GCC, a suite of 
compilation tools for C, C++, etc)

• KDE [http://www.kde.org/] (Linux desktop environment)
• Firefox [http://www.mozilla.com/en-US/firefox/] (web browser 

based on Mozilla)
• MySQL [http://www.mysql.com/] (database)
• OpenOffice.org [http://www.openoffice.org/] (office suite, 

including word processor, spreadsheet, and presentation 
software)

• PHP [http://www.php.net/] (web development)
• Perl [http://www.perl.org/] (programming/scripting language)
• Python [http://www.python.org/] (programming/scripting 

language)
• Samba [http://www.samba.org/] (file and print server)

http://httpd.apache.org/
http://www.gnome.org/
http://www.gnu.org/software/gcc/gcc.html
http://www.kde.org/
http://www.mozilla.com/en-US/firefox/
http://www.mysql.com/
http://www.openoffice.org/
http://www.php.net/
http://www.perl.org/
http://www.python.org/
http://www.samba.org/


Open Source Operating System(Linux)

Introduction to Linux
• Unix-like computer operating system
• Assembled under open source

development and distribution
• The defining component of Linux is

Linux Kernel
• An Operating system kernel first

released on 5th october 1991 by Linux
Torvalds.



• Linux is an O/S core 
written by Linus Torvalds 
and others AND

• a set of small programs 
written by Richard 
Stallman and others. They 
are the GNU utilities.

http://www.gnu.org/

What is Linux?
Linux + GNU Utilities = Free Unix



• Linux was orginally developed as free
operating system for Intel x86 based
personal computers.

• It has since been ported to more computer
hardware platforms than any other operating
system.

• It is a leading operating system on servers
,mainframe computers and supercomputers

• Linux also runs on embedded systems

• such as mobile phones, tablet, network
routers, televisions and video games.



• The architecture of a Linux System consists of the 
following layers 



Linux Advantages
• Low Cost
• Stability
• Performance
• Network friendliness
• Flexibility
• Compatibility
• Choice
• Fast and easy installation
• Full use of hard disk
• Multitasking
• Security
•



Linux OS Distributions
• Red Hat

• Ubuntu

• Debian

• SuSE

• Mandrake

• Stackware



Linux Has Many Distributions



Linux Essential Commands



pwd command
• pwd’ command prints the absolute path to current 

working directory.
• $ pwd

/home/raghu

date command
• Displays current time and date.
• $ date
• Fri Jul 6 01:07:09 IST 2012
• If you are interested only in time, you can use 'date 

+%T' (in hh:mm:ss):
• $ date +%T
• 01:13:14





clear command

$ clear

This command clears the screen.

wc command(Word count)

This command counts lines, words and 
letters of the input given to it.

$ wc /etc/passwd

The /etc/passwd file has 35 lines, 57 
words, and 1698 letters present in it.



• ls command
The ls command lists the directory content. If no 
directory is specified, the command will display 
the content of the working directory.

• pwd command
The pwd command is used to print the path of 
the current directory.

https://geek-university.com/wp-content/images/linux/ls_command.jpg
https://geek-university.com/wp-content/images/linux/ls_command.jpg


mkdir command

To create a new directoy, the mkdir command is used. You 

must specify the name of the directory. If no path is specified, 

the directory is created inside the working directory.

In the picture above you can see that we’ve created a 
directory called my_folder using the mkdir command. We have then 
displayed the content of the directory with the ls command.

https://geek-university.com/wp-content/images/linux/pwd_command.jpg
https://geek-university.com/wp-content/images/linux/pwd_command.jpg
https://geek-university.com/wp-content/images/linux/mkdir_command.jpg
https://geek-university.com/wp-content/images/linux/mkdir_command.jpg


• echo command
The echo command is used to  output text to 
the screen. You simply type echo and then the 
text you would like to display.

• whoami command
The whoami command displays the username 
of the current user.

https://geek-university.com/wp-content/images/linux/echo_command.jpg
https://geek-university.com/wp-content/images/linux/echo_command.jpg


Cd command

To change the current working directory we use the cd command. You must 

specify the path of the directory you would like to access.

https://geek-university.com/wp-content/images/linux/whoami_command.jpg
https://geek-university.com/wp-content/images/linux/whoami_command.jpg
https://geek-university.com/wp-content/images/linux/cd_command.jpg
https://geek-university.com/wp-content/images/linux/cd_command.jpg


cd command
• Let’s say you’re 

in /home/username/Documents and you 
want to go to Photos, a subdirectory 
of Documents. 

• To do so, simply type the following 
command: cd Photos.

• Another scenario is if you want to switch to a 
completely new directory, for 
example,/home/username/Movies. In this 
case, you have to type cd followed by the 
directory’s absolute path:
cd /home/username/Movies.

• cd .. (with two dots) to move one directory up
• cd to go straight to the home folder



ls command
• The ls command will display the contents of 

your current working directory.
• If you want to see the content of other 

directories, type ls and then the directory’s 
path. For example, 
enter ls /home/username/Documents to view 
the content of Documents.

• There are variations you can use with 
the ls command:

• ls -R will list all the files in the sub-directories as 
well

• ls -a will show the hidden files
• ls -al will list the files and directories with 

detailed information like the permissions, size, 
owner, etc.



cat command (concatenate)
i) Cat file.txt It is used to list the contents of a file 

on the standard output (sdout). 

Here are other ways to use the cat command:

ii) cat > filename creates a new file

iii) cat filename1 filename2>filename3

joins two files (1 and 2) and stores the output of 
them in a new file (3)

iv) to convert a file to upper or lower case use,

cat filename | tr a-z A-Z >output.txt



cp command (copy command)
• Use the cp command to copy files from the current 

directory to a different directory. 

• cp scenery.jpg /home/username/Pictures would 
create a copy of scenery.jpg (from your current 
directory) into the Pictures directory.

mv command
• The arguments in mv are similar to the cp command. 

You need to type mv, the file’s name, and the 
destination’s directory. 

• For example: mv file.txt 
/home/username/Documents.



mkdir command
• Use mkdir command to make a new directory — if you 

type mkdir Music it will create a directory 
called Music.

• There are extra mkdir commands as well:

• To generate a new directory inside another directory, 
use this Linux basic command mkdir Music/Newfile

• use the p (parents) option to create a directory in 
between two existing directories. For example, mkdir -
p Music/2020/Newfile will create the new “2020” file.

rmdir command
• If you need to delete a directory, use 

the rmdir command. However, rmdir only allows you 
to delete empty directories.



rm command

• The rm command is used to delete directories 
and the contents within them. If you only 
want to delete the directory — as an 
alternative to rmdir — use rm -r.

• Note: Be very careful with this command and 
double-check which directory you are in. This 
will delete everything and there is no undo.



touch command
• The touch command allows you to create a blank new file 

through the Linux command line. As an example, enter 
touch /home/username/Documents/Web.html to create 
an HTML file entitled Web under the Documents directory.

locate command
• You can use this command to locate a file, just like the 

search command in Windows. What’s more, using the -
i argument along with this command will make it case-
insensitive, so you can search for a file even if you don’t 
remember its exact name.

• To search for a file that contains two or more words, use an 
asterisk (*). For example, locate -i school*note command 
will search for any file that contains the word “school” and 
“note”, whether it is uppercase or lowercase.



find command
• Similar to the locate command, using find also 

searches for files and directories. The difference 
is, you use the find command to locate files 
within a given directory.

• As an example, find /home/ -name 
notes.txt command will search for a file 
called notes.txt within the home directory and its 
subdirectories.

• Other variations when using the find are:
• To find files in the current directory use, find . -

name notes.txt
• To look for directories use, / -type d -name notes. 

txt



grep command
• Another basic Linux command that is 

undoubtedly helpful for everyday use is grep. 
It lets you search through all the text in a 
given file.

• To illustrate, grep blue notepad.txt will search 
for the word blue in the notepad file. Lines 
that contain the searched word will be 



File System Concept
A file system is a logical collection of files 
on a partition or disk. 

• Types of File Systems

The most important types of files system are

oDisk File System

oNetwork File System



Disk File System
o A disk file system takes advantages of the 

ability of disk storage media to randomly 
address data in a short amount of time.

o The Linux kernel supports the most popular of 
which are ext2, ext3 and XFS.

Network File System
o That acts on client and server providing access

o Ex. NFS,  AFS, SMB Protocols.



Standard Files
• Ext, Ext2, Ext3, Ext4, JFS, XFS, btrfs and

swap
• Ext: an old one and no longer used due

to limitations.
• Ext2: first Linux file system that allows

two terabytes of data allowed.
• Ext3: came from Ext2, but with upgrades

and backward compatibility.
• Ext4: faster and allow large files with

significant speed.



• JFS: old file system made by IBM. It works 
very well with small and big files, but it failed 
and files corrupted after long time use, 
reports say.

• XFS: old file system and works slowly with 
small files.

• Btrfs: made by Oracle. It is not stable as Ext 
in some distros, but you can say that it is a 
replacement for it if you have to. It has 
excellent performance.

• You may notice From the comparison above 
that Ext4 is the best Linux File System.



File System Structure
(Directory Structure)

• Unix uses a hierarchical file system
structure, much like an upside-down
tree, with root (/) at the base of the file
system and all other directories
spreading from there.

• A Unix filesystem is a collection of files
and directories that has the following
structure.







• /bin: Where Linux core commands reside like

ls, mv, cp, mv, rm, cat

• /boot: Where boot loader and boot files are 
located.

This directory contains everything required for 
the boot process and installer. 

Thus, the /boot directory stores data that is 
used before the kernel begins executing user-
mode programs. 



• /dev: Where all physical drives are mounted like 
USBs DVDs.

• /etc: Contains configurations for the installed 
packages

• /home: Where every user will have a personal 
folder to put his folders with his name like 
/home/likegeeks.

• /lib: Where the libraries(functions/routines) of the 
installed packages located since libraries shared 
among all packages,

• unlike Windows, you may find duplicates in 
different folders.

• /media: Here are the external devices like DVDs 
and USB sticks that are mounted, and you can 
access their files from here.



• /mnt: Where you mount other things Network 
locations and some , you may find your mounted 
USB or DVD.

Temporary mount point useful for when you 
insert your USB stick and it gets mounted under 
/mnt. 

• /opt: Some optional packages are located here 
and managed by the package manager.

• /proc: Because everything on Linux is a file, this 
folder for processes running on the system,

you can access them and see much info about 
the current processes.



• /root: The home folder for the root
user.

• /sbin: Like /bin, but binaries here are
for root user only.

• /tmp: Contains the temporary files.

• /usr: Where the utilities and files
shared between users on Linux.

• /var: Contains system logs and other
variable data.

https://likegeeks.com/listing-users-in-linux/


• /tmp
Holds temporary files used between system boots

• /usr
Used for miscellaneous purposes, and can be
used by many users. Includes administrative
commands, shared files, library files, and others

• /var
Typically contains variable-length files such as log
and print files and any other type of file that may
contain a variable amount of data

• /sbin
Contains binary (executable) files, usually for
system administration. For
example, fdisk and ifconfig utlities



• Congiguration files(config)

are files used to configure
the parameters and initial settings for
some computer programs. They are used for
user applications, server
processes and operating system settings.

https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Parameter_(computer_programming)
https://en.wikipedia.org/wiki/Initialization_(programming)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Operating_system


Navigating the File System
Navigating to the files system

• 1   cat filename

• Displays a filename

• 2   cd dirname

• Moves you to the identified directory

• 3    cp file1 file2

• Copies one file/directory to the specified location

• 4  file filename

• Identifies the file type (binary, text, etc)

• 5  find filename dir

• Finds a file/directory



• head filename

• Shows the beginning of a file

• less filename

• Browses through a file from the end or the beginning

• ls dirname

• Shows the contents of the directory specified

• mkdir dirname

• Creates the specified directory

• more filename

• Browses through a file from the beginning to the end

• mv file1 file2

• Moves the location of, or renames a file/directory

• pwd

• Shows the current directory the user is in



• pwd
• Shows the current directory the user is in
• rm filename
• Removes a file
• rmdir dirname
• Removes a directory
• tail filename
• Shows the end of a file
• touch filename
• Creates a blank file or modifies an existing file or its 

attributes
• whereis filename
• Shows the location of a file
• which filename
• Shows the location of a file if it is in your PATH









The Linux Security Model

In the UNIX System model,

oPeople or processes with “root” privileges
can do anything; others accounts can do
much less.

o From attackers perspective, the challenge is

o Cracking a Linux system and to get gaining
the root privileges.

oOnce that happens, attackers can erase or
edit the logs files.



oHide their processes

oBasically redefine the reality of the system
like Files a and directories.

oHow can such a powerful operating
system with such a limited security
model?

So to secure Linux systems by making
careful use of native

o Linux security controls,

o plus add-on tools such as sudo or
Tripwire.



However, the Linux Security model relies on
Discretionary Access Controls(DAC)

o In the linux DAC system,

there are users,

each of which belongs to one or more groups;
and there are also objects: files and
directories.

o Users read, write, and execute these objects,
based on the objects permissions, of which
each object has three sets

i)permissions for the objects user-owner

Ii)Group-owner iii) other



o These permissions are enforced by the Linux
kernel, the “brain” of the operating system.

o Since process/program is actually just a file
that gets copied into executable memory
when run.

o When running processes attempts to

Read, write or execute some other objects,

o The kernel will first evaluate the objects
permissions against the process’s user and
group identity.



o This basic transaction, a process
attempts to some action read, write and
execute against some object file,
directory, special file is illustrated in
figure.



oWhoever owns an object can set or
change its permissions.

oHerein lies the Linux DAC models
weakness.

o The system super user account called
“root” has the ability to both take
ownership and change the permissions
of all the objects in the system.





o all files 
o directories 
o running processes 
o and system resources are associated with a user and group.
The security can be set 
o independently for the user
o Owner
o or a group.

A third set of permissions is maintained 
o for everyone on the system 
o who is neither the owner nor in the group associated with a resource.
o This is commonly referred to as the permissions for 'other' users.

These security levels, user, group and other, each have a set of permissions associated 
with them.

• Typical permissions are read, write and execute and depending on the type of 
resource,

• these will determine what a given user is allowed to do with the resource.

• In this example, the ls -l command is used to show the ownership and permissions 
of the file status.sh.



• The permissions portion of the output breaks down further to 
indicate the level of access for the owner, group and other users.

• Each user on the system is associated with a primary group but can 
also belong to additional groups, adding to the flexibility of Linux 
security.

• A user has access rights granted to his or her primary group as well 
as any additional groups to which the user belongs.

• Though we use user and group names are used to interact with the 
system, these identifiers are tracked within the system by ID 
numbers.

• The user ID (UID)and group ID (GID) numbers are associated with 
user and group names through the /etc/passwd and /etc/group 
files, respectively.

• With this understanding of why users and groups are so important, 
now take a look at how to create, modify an remove them.



Vi Editor?
• vi is generally considered the de facto standard in

Unix editors because −

• It's usually available on all the flavors of Unix
system.

• Its implementations are very similar across the
board.

• It requires very few resources.

• It is more user-friendly than other editors such as
the ed or the ex.

• You can use the vi editor to edit an existing file or
to create a new file from scratch. You can also
use this editor to just read a text file.

•



vi editor
• It’s easy to invoke vi. At the command

line, you type vi <filename> to either
create a new file, or to edit an existing
one.

• $ vi filename.txt

• The vi editor has two modes:

Command and Insert.

• When you first open a file with vi, you
are in Command mode.



• Command mode means that you can use
keyboard keys to navigate, delete, copy,
paste, and do a number of other tasks—
except entering text.

• To enter Insert mode, press i.

• In Insert mode, you can enter text, use
the Enter key to go to a new line,

• use the arrow keys to navigate text

• To return to Command mode, press
the Esc key once.



Starting the vi Editor
Sr.No. Command & Description

1    vi filename

Creates a new file if it already does not exist,   
otherwise opens an existing file.

2    vi -R filename

Opens an existing file in the read-only mode.

3    view filename

Opens an existing file in the read-only mode.



Following is an example to create a new file testfile if it 
already does not exist in the current working directory −

• $vi testfile

• The above command will generate the following 
output −

• ~

• ~

• ~

• ~

• ~

• "testfile" [New File]    

• You will notice a tilde (~) on each line following the cursor.

• A tilde represents an unused line.

• You now have one open file to start working on.



Operation Modes
vi editor, we usually come across two modes

• Command mode − This mode enables you to
perform administrative tasks such as saving the
files, executing the commands, moving the
cursor, cutting and pasting the lines or words, as
well as finding and replacing. In this mode,
whatever you type is interpreted as a command.

• Insert mode − This mode enables you to insert
text into the file. Everything that's typed in this
mode is interpreted as input and placed in the
file..



• vi always starts in the command mode. To
enter text, you must be in the insert mode for
which simply type i. To come out of the insert
mode, press the Esc key, which will take you
back to the command mode.

• Hint − If you are not sure which mode you are
in, press the Esc key twice; this will take you to
the command mode. You open a file using the
vi editor. Start by typing some characters and
then come to the command mode to
understand the difference.



Getting Out of vi
• The command to quit out of vi is :q.

• Once in the command mode, type colon, and
'q', followed by return.

• If your file has been modified in any way, the
editor will warn you of this, and not let you
quit. To ignore this message, the command to
quit out of vi without saving is :q!. This lets
you exit vi without saving any of the changes.

• The command to save the contents of the
editor is :w. You can combine the above
command with the quit command, or
use :wq and return.



• The easiest way to save your changes and exit
vi is with the ZZ command. When you are in
the command mode, type ZZ.
The ZZ command works the same way as
the :wq command.

• If you want to specify/state any particular
name for the file, you can do so by specifying
it after the :w. For example, if you wanted to
save the file you were working on as another
filename called filename2, you would type :w
filename2 and return.



Moving within a File

• To move around within a file without
affecting your text, you must be in the
command mode (press Esc twice).

• The following table lists out a few
commands you can use to move
around one character at a time −



1    K

Moves the cursor up one line

2    J

Moves the cursor down one line

3   H

Moves the cursor to the left one character 
position

4   l

Moves the cursor to the right one character 
position



Editing files

• 1   i

• Inserts text before the current cursor location

• 2  I

• Inserts text at the beginning of the current line

• 3   a

• Inserts text after the current cursor location

• 4   A

• Inserts text at the end of the current line



• 5   o

• Creates a new line for text entry below the 
cursor location

• 6   O

• Creates a new line for text entry above the 
cursor location



Deleting Characters
Here is a list of important commands, which can be used 

to delete characters and lines in an open file −
Sr.No. Command & Description
1  X

Deletes the character under the cursor location
2   X

Deletes the character before the cursor location
3   dw

Deletes from the current cursor location to the next 
word

4    d^
Deletes from the current cursor position to the 
beginning of the line



5   d$
Deletes from the current cursor position to the end of 
the line

6   D
Deletes from the cursor position to the end of the 
current line

7   dd
Deletes the line the cursor is on
• As mentioned above, most commands in vi can be 

prefaced by the number of times you want the action 
to occur. For example, 2x deletes two characters under 
the cursor location and 2dd deletes two lines the 
cursor is on.

• It is recommended that the commands are practiced 
before we proceed further.



Copy and paste command
1   yy

Copies the current line.

2  yw

Copies the current word from the character the 
lowercase w cursor is on, until the end of the 
word.

3  p

Puts the copied text after the cursor.

4  P

Puts the  text before the cursor.





















Partitioning with fdisk

• This section shows you how to
actually partition your hard drive with
the fdisk utility.

• Linux allows only 4 primary partitions.
You can have a much larger number
of logical partitions by sub-dividing
one of the primary partitions. Only
one of the primary partitions can be
sub-divided.



fdisk usage

• fdisk is started by typing (as root)

• fdisk device at the command prompt.

• device might be something 
like /dev/hda or /dev/sda .

The basic fdisk commands you need are:

• p print the partition table

• n create a new partition

• d delete a partition

• q quit without saving changes

• w write the new partition table and exit



• Four primary partitions

• Divide up the remaining space for the three 
other partitions.

• Example:

• I start fdisk from the shell prompt: 

• fdisk /dev/hdb



Shell Scripting
A shell script is a computer program designed
to be run by the Unix/Linux shell which could
be one of the following:
o The Bourne Shell

o The C Shell

o The Korn Shell

A shell is a command-line interpreter and
typical operations performed by shell scripts
include file manipulation, program execution,
and printing text.









How to use  Shell Scripting?

o Create a file using a vi editor(or any other 
editor). 

o Name script file with extension .sh.

o Start the script with #! /bin/sh.

o Write some code.

o Save the script file as filename.sh.

o For executing 
the script type bash filename.sh.



• Ex.The following script uses the read command
which takes the input from the keyboard and
assigns it as the value of the variable PERSON and
finally prints it on STDOUT.
#!/bin/sh
echo "What is your name?" 
read PERSON 
echo "Hello, $PERSON“
Here is a sample run of the script −
$./test.sh 
What is your name?
Zara Ali 
Hello, Zara Ali $



What are Shell Variables?
Variables store data in the form of characters and numbers. 
Similarly, Shell variables are used to store information and 
they can by the shell only.
For example, the following creates a shell variable and then 
prints it:
variable ="Hello" 
echo $variable
Below is a small script which will use a variable.
#!/bin/sh
echo "what is your name?" 
read name 
echo "How do you do, $name?" 
read remark 
echo "I am $remark too!"





Shell Operators



There are many operators in Shell Script some of them are 
discussed based on string.
Equal operator (=): This operator is used to check whether 
two strings are equal.
Syntax:
Operands1 = Operand2
#!/bin/sh
str1="GeeksforGeeks"; 
str2="geeks"; 
if [ $str1 = $str2 ] 
then 
echo "Both string are same"; 
else
echo "Both string are not same"; 

fi
Output: Both string are not same

•



Not Equal operator (!=): This operator is used when both 
operands are not equal.

Syntax:
Operands1 != Operands2

Example:
#!/bin/sh
str1="GeeksforGeeks"; 
str2="geeks"; 
if [ $str1 != $str2 ] 
then 

echo "Both string are not same"; 
else

echo "Both string are same"; 
fi
Output:
Both string are not same



Less then (\<): It is a conditional operator and used to check 
operand1 is less then operand2.

Syntax: Operand1 \< Operand2

Example:

#!/bin/sh

str1="GeeksforGeeks"; 

str2="Geeks"; 

if [ $str1 \< $str2 ] 

then 

echo "$str1 is less then $str2"; 

else

echo "$str1 is not less then $str2"; 

fi

Output:   GeeksforGeeks is not less then Geeks



Greater then (\>): This operator is used to check the 
operand1 is greater then operand2.
Syntax:
Operand1 \> Operand2
Example:
#!/bin/sh
str1="GeeksforGeeks"; 
str2="Geeks"; 
if [ $str1 \> $str2 ] 
then 

echo "$str1 is greater then $str2"; 
else

echo "$str1 is less then $str2"; 
fi

Output:
GeeksforGeeks is greater then Geeks



Check string length greater then 0: This operator is used to 
check the string is not empty.
Syntax:
[ -n Operand ]
Example:
#!/bin/sh
str="GeeksforGeeks"; 
if [ -n $str ] 
then 

echo "String is not empty"; 
else

echo "String is empty"; 
fi

Output:
String is not empty



Check string length equal to 0: This operator is used to 
check the string is empty.
Syntax:
[ -z Operand ]
Example:
#!/bin/sh
str=""; 
if [ -z $str ] 
then 

echo "String is empty"; 
else

echo "String is not empty"; 
fi
Output:
String is empty



Conditional Statements | Shell Script

Conditional Statements: There are total 5 
conditional statements which can be used in 
bash programming

if statement

if-else statement

if..elif..else..fi statement (Else If ladder)

if..then..else..if..then..fi..fi..(Nested if)

switch statement

Their description with syntax is as follows:



if statement
This block will process if specified condition is 
true.
Syntax:

if [ expression ]then   statement   fi

if-else statement
If specified condition is not true in if part then 
else part will be execute.
Syntax

if [ expression ]then 

Statement1

else   statement2

fi



if..elif..else..fi statement (Else If ladder)
To use multiple conditions in one if-else block, then elif
keyword is used in shell. If expression1 is true then it 
executes statement 1 and 2, and this process continues. If 
none of the condition is true then it processes else part.
Syntax
if [ expression1 ]then   statement1   statement2   .   
elif [ expression2 ]
then   
statement3  
statement4 
.   .

else   
Statement5
fi



switch statement
case statement works as a switch statement if specified 
value match with the pattern then it will execute a block of 
that particular pattern.
When a match is found all of the associated statements 
until the double semicolon (;;) is executed.
A case will be terminated when the last command is 
executed.
If there is no match, the exit status of the case is zero.
Syntax:
case  in  
Pattern  1) 

Statement 1;;   
Pattern  n)

Statement n;;
esac



Implementing switch statement
CARS="bmw“
#Pass the variable in string 
case "$CARS" in 

#case 1 
"mercedes") echo "Headquarters - Affalterbach, 

Germany" ;; 
#case 2 
"audi") echo "Headquarters - Ingolstadt, Germany" ;; 
#case 3 
"bmw") echo "Headquarters - Chennai, Tamil Nadu, 

India" ;; 
esac
Output
$bash -f main.sh
Headquarters - Chennai, Tamil Nadu, India.



#Initializing two variables 
a=10 
b=20 
#Check whether they are equal 
if [ $a == $b ] 
then 

echo "a is equal to b"
fi

#Check whether they are not equal 
if [ $a != $b ] 
then 

echo "a is not equal to b"
fi
Output
$bash -f main.sh a is not equal to b



#Initializing two variables 
a=20 
b=20 
if [ $a == $b ] 
then 
#If they are equal then print this 

echo "a is equal to b"
else

#else print this 
echo "a is not equal to b"

fi
Output
$bash -f main.sh a is equal to b



Basic String Operations
String Length

STRING="this is a string"

echo ${#STRING}            # 16

Substring Extraction

Extract substring of length $LEN from $STRING 
starting after position $POS. Note that first 
position is 0.

STRING="this is a string"

POS=1

LEN=3

echo ${STRING:$POS:$LEN}   # his



• wc command

• wc stands for word count. 

• It is used to find out number of lines, word 
count, byte and characters count in the files 
specified in the file arguments.

• First column shows number of lines present in a 
file specified, second column shows number of 
words present in the file, third column shows 
number of characters present in file and fourth 
column itself is the file name which are given as 
argument.

• Syntax:

• wc [OPTION]... [FILE]...



• Let us consider two files having 
name state.txt and capital.txt containing 5 names of the 
Indian states and capitals respectively.

• $ cat state.txt
• Andhra Pradesh
• Arunachal Pradesh
• Assam
• Bihar
• Chhattisgarh
• $ cat capital.txt
• Hyderabad
• Itanagar
• Dispur
• Patna
• Raipur



• Passing only one file name in the argument.
• $ wc state.txt
• 5  7 63 state.txt    
• OR
• $ wc capital.txt
• 5  5 45 capital.txt
• Passing more than one file name in the 

argument.
• $ wc state.txt capital.txt  
• 5   7  63 state.txt 
• 5   5  45 capital.txt 
• 10  12 108 total 





























INVESTIGATION AND MANAGING 
PROCESS



























































UNIT- II 

 

Introduction to MY SQL – The show Databases and Table – The USE command 

– Create Database and Tables – Describe Table – Select, Insert, Update, and 

Delete statement – Some Administrative detail – Table Joins – Loading and Dumping a 

Database. 

 

Introduction to MY SQL 

What is MySQL? 

 MySQL is a database system used for developing web-based software applications. 

 MySQL used for both small and large applications. 

 MySQL is a relational database management system (RDBMS). 

 MySQL is fast, reliable, and flexible and easy to use. 

 MySQL supports standard SQL (Structured Query Language). 

 MySQL is free to download and use. 

 MySQL was developed by Michael Widenius and David Axmark in 1994. 

 MySQL is presently developed, distributed, and supported by Oracle Corporation. 

 MySQL Written in C, C++. 

Main Features of MySQL 

 MySQL server design is multi-layered with independent modules. 

 MySQL is fully multithreaded by using kernel threads. It can handle multiple CPUs if they are 

available. 

 MySQL provides transactional and non-transactional storage engines. 

 MySQL has a high-speed thread-based memory allocation system. 

 MySQL supports in-memory heap table. 

 MySQL Handles large databases. 

 MySQL Server works in client/server or embedded systems. 

 MySQL Works on many different platforms. 

Who Uses MySQL 

 Some of the most famous websites like Facebook, Wikipedia, Google (not for search), 

YouTube, Flickr. 



 Content Management Systems (CMS) like WordPress, Drupal, Joomla, phpBB etc. 

 A large number of web developers worldwide are using MySQL to develop web applications. 

The show Databases and Table 

SHOW DATABASES lists the databases on the MySQL server host. 

SHOW SCHEMAS is a synonym for SHOW DATABASES.  

To show the tables in a MySQL database: 

1. Log into your database using the mysql command line client 

2. Issue the use command to connect to your desired database (such as, use 

mydatabase) 

3. Use the MySQL show tables command, like this: 

show tables; 

A complete explanation follows. 

MySQL ‘show tables’: A complete example 

First, connect to your MySQL database using your MySQL client from your operating system 

command line: 

$ mysql -u root -p 

Next, after you're logged into your MySQL database, tell MySQL which database you want to 

use: 

mysql> use pizza_store; 

Now issue the MySQL show tables command to list the tables in the current database: 

https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html


mysql> show tables; 

For instance, if I issue this MySQL show tables command in one of my example MySQL 

databases, I'll see this output: 

mysql> show tables; 

+-----------------------+ 

| Tables_in_pizza_store | 

+-----------------------+ 

| crust_sizes           |  

| crust_types           |  

| customers             |  

| orders                |  

| pizza_toppings        |  

| pizzas                |  

| toppings              |  

+-----------------------+ 

7 rows in set (0.00 sec) 



USE Statement 

USE db_name 

The USE statement tells MySQL to use the named database as the default (current) database for 

subsequent statements. This statement requires some privilege for the database or some object 

within it. 

The named database remains the default until the end of the session or another USE statement is 

issued: 

USE db1; 

SELECT COUNT(*) FROM mytable;   # selects from db1.mytable 

USE db2; 

SELECT COUNT(*) FROM mytable;   # selects from db2.mytable 

The database name must be specified on a single line. Newlines in database names are not 

supported. 

Making a particular database the default by means of the USE statement does not preclude 

accessing tables in other databases. The following example accesses the author table from 

the db1 database and the editor table from the db2 database: 

USE db1; 

SELECT author_name,editor_name FROM author,db2.editor 

  WHERE author.editor_id = db2.editor.editor_id; 

 

  

Create MySQL Tables 

To begin with, the table creation command requires the following details − 

 Name of the table 

 Name of the fields 

 Definitions for each field 

Syntax 

Here is a generic SQL syntax to create a MySQL table − 

https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html


CREATE TABLE table_name (column_name column_type); 

Now, we will create the following table in the TUTORIALS database. 

create table tutorials_tbl( 

   tutorial_id INT NOT NULL AUTO_INCREMENT, 

   tutorial_title VARCHAR(100) NOT NULL, 

   tutorial_author VARCHAR(40) NOT NULL, 

   submission_date DATE, 

   PRIMARY KEY ( tutorial_id ) 

); 

Here, a few items need explanation − 

 Field Attribute NOT NULL is being used because we do not want this field to be 

NULL. So, if a user will try to create a record with a NULL value, then MySQL will 

raise an error. 

 Field Attribute AUTO_INCREMENT tells MySQL to go ahead and add the next 

available number to the id field. 

 Keyword PRIMARY KEY is used to define a column as a primary key. You can use 

multiple columns separated by a comma to define a primary key. 

Creating Tables from Command Prompt 

It is easy to create a MySQL table from the mysql> prompt. You will use the SQL 

command CREATE TABLE to create a table. 

Example 

Here is an example, which will create tutorials_tbl − 

root@host# mysql -u root -p 

Enter password:******* 

mysql> use TUTORIALS; 

Database changed 

mysql> CREATE TABLE tutorials_tbl( 

   -> tutorial_id INT NOT NULL AUTO_INCREMENT, 

   -> tutorial_title VARCHAR(100) NOT NULL, 

   -> tutorial_author VARCHAR(40) NOT NULL, 

   -> submission_date DATE, 

   -> PRIMARY KEY ( tutorial_id ) 

   -> ); 

Query OK, 0 rows affected (0.16 sec) 

mysql> 

NOTE − MySQL does not terminate a command until you give a semicolon (;) at the end of 

SQL command. 

DESCRIBE and EXPLAIN in MySQL? 



November 19, 2018 

In MySQL, the DESCRIBE  and EXPLAIN  statements are synonyms, used either to obtain 

information about table structure or query execution plans. 

1. To describe a table: 

Even though DESCRIBE  and EXPLAIN  statements are synonyms, the DESCRIBE  statement 

is used more to obtain information about a table structure while EXPLAIN  statement is used to 

obtain a query execution plan. 

The DESCRIBE  statement is a shortcut for SHOW COLUMN  statement: 

DESCRIBE table_name; 

is equivalent to this SHOW COLUMN  statement: 

SHOW COLUMNS FROM table_name; 

Or you can also use the short form of describe: 

DESC table_name; 

Those describe statements above show the columns in the table and all their attributes such as 

name, data type, collation, Nullability, Primary key, default, comment, etc. 

Instead of DESCRIBE or DESC, you can use EXPLAIN statement which works the same: 

EXPLAIN table_name; 

2. To describe a query execution plan 

We often use EXPLAIN . It provides information about how your SQL database executes a 

query. 

EXPLAIN  works with SELECT , DELETE , INSERT , REPLACE , 

and UPDATE  statements. It also requires the SELECT privilege for any tables or views 

accessed, including any underlying tables of views. For views, EXPLAIN also requires 

the SHOW VIEW privilege. 

EXPLAIN SELECT * FROM table_name; 

Inserting data in Table 



The INSERT statement is used to insert data into tables. 

We will create a new table, where we will do our examples. 

mysql> CREATE TABLE Books(Id INTEGER PRIMARY KEY, Title VARCHAR(100), 

    -> Author VARCHAR(60)); 

We create a new table Books, with Id, Title and Author columns. 

mysql> INSERT INTO Books(Id, Title, Author) VALUES(1, 'War and Peace',  

    -> 'Leo Tolstoy'); 

This is the classic INSERT SQL statement. We have specified all column names after the table 

name and all values after the VALUES keyword. We add our first row into the table. 

mysql> SELECT * FROM Books; 

+----+---------------+-------------+ 

| Id | Title         | Author      | 

+----+---------------+-------------+ 

|  1 | War and Peace | Leo Tolstoy | 

+----+---------------+-------------+ 

We have inserted our first row into the Books table. 

mysql> INSERT INTO Books(Title, Author) VALUES ('The Brothers Karamazov', 

    -> 'Fyodor Dostoyevsky'); 

We add a new title into the Books table. We have omitted the Id column. The Id column 

has AUTO_INCREMENT attribute. This means that MySQL will increase the Id column 

automatically. The value by which the AUTO_INCREMENT column is increased is controlled 

by auto_increment_increment system variable. By default it is 1. 

mysql> SELECT * FROM Books; 

+----+------------------------+--------------------+ 

| Id | Title                  | Author             | 

+----+------------------------+--------------------+ 

|  1 | War and Peace          | Leo Tolstoy        | 

|  2 | The Brothers Karamazov | Fyodor Dostoyevsky | 

+----+------------------------+--------------------+ 

Here is what we have in the Books table. 

mysql> INSERT INTO Books VALUES(3, 'Crime and Punishment', 

    -> 'Fyodor Dostoyevsky'); 



In this SQL statement, we did not specify any column names after the table name. In such a case, 

we have to supply all values. 

mysql> REPLACE INTO Books VALUES(3, 'Paradise Lost', 'John Milton'); 

Query OK, 2 rows affected (0.00 sec) 

The REPLACE statement is a MySQL extension to the SQL standard. It inserts a new row or 

replaces the old row if it collides with an existing row. In our table, there is a row with Id=3. So 

our previous statement replaces it with a new row. There is a message that two rows were 

affected. One row was deleted and one was inserted. 

mysql> SELECT * FROM Books WHERE Id=3; 

+----+---------------+-------------+ 

| Id | Title         | Author      | 

+----+---------------+-------------+ 

|  3 | Paradise Lost | John Milton | 

+----+---------------+-------------+ 

This is what we have now in the third column. 

We can use the INSERT and SELECT statements together in one statement. 

mysql> CREATE TABLE Books2(Id INTEGER PRIMARY KEY AUTO_INCREMENT,  

    -> Title VARCHAR(100), Author VARCHAR(60)) type=MEMORY; 

First, we create a temporary table called Books2 in memory. 

mysql> INSERT INTO Books2 SELECT * FROM Books; 

Query OK, 3 rows affected (0.00 sec) 

Records: 3  Duplicates: 0  Warnings: 0 

Here we insert all data into the Books2 that we select from the Books table. 

mysql> SELECT * FROM Books2; 

+----+------------------------+--------------------+ 

| Id | Title                  | Author             | 

+----+------------------------+--------------------+ 

|  1 | War and Peace          | Leo Tolstoy        | 

|  2 | The Brothers Karamazov | Fyodor Dostoyevsky | 

|  3 | Paradise Lost          | John Milton        | 

+----+------------------------+--------------------+ 

We verify it. All OK. 

mysql> INSERT INTO Books(Title, Author) VALUES ('The Insulted and Humiliated', 

    -> 'Fyodor Dostoyevsky'), ('Cousin Bette', 'Honore de Balzac'); 



Query OK, 2 rows affected (0.00 sec) 

Records: 2  Duplicates: 0  Warnings: 0 

We can insert more than one row into the table with the INSERT statement. Here we show how. 

We can insert data from a file on the filesystem. First, we dump data from the Books table in 

a books.csv file. 

mysql> SELECT * INTO OUTFILE '/tmp/books.csv' 

    -> FIELDS TERMINATED BY ',' 

    -> LINES TERMINATED BY '\n' 

    -> FROM Books; 

mysql> TRUNCATE Books; 

Query OK, 0 rows affected (0.00 sec) 

 

mysql> SELECT * FROM Books; 

Empty set (0.00 sec) 

We delete all data from the table. 

Deleting data in Table 

In MySQL, we can delete data using the DELETE and TRUNCATE statements. 

The TRUNCATE statement is a MySQL extension to the SQL specification. First, we are going 

to delete one row from a table. We will use the Books2 table that we have created previously. 

mysql> DELETE FROM Books2 WHERE Id=1; 

We delete a row with Id=1. 

mysql> SELECT * FROM Books2; 

+----+------------------------+--------------------+ 

| Id | Title                  | Author             | 

+----+------------------------+--------------------+ 

|  2 | The Brothers Karamazov | Fyodor Dostoyevsky | 

|  3 | Paradise Lost          | John Milton        | 

+----+------------------------+--------------------+ 

We verify the data. 

mysql> DELETE FROM Books2; 

mysql> TRUNCATE Books2; 

These two SQL statements delete all data in the table. 

Updating data 



The UPDATE statement is used to change the value of columns in selected rows of a table. 

mysql> SELECT * FROM Books; 

+----+-----------------------------+--------------------+ 

| Id | Title                       | Author             | 

+----+-----------------------------+--------------------+ 

|  1 | War and Peace               | Leo Tolstoy        | 

|  2 | The Brothers Karamazov      | Fyodor Dostoyevsky | 

|  3 | Paradise Lost               | John Milton        | 

|  4 | The Insulted and Humiliated | Fyodor Dostoyevsky | 

|  5 | Cousin Bette                | Honore de Balzac   | 

+----+-----------------------------+--------------------+ 

We recreate the table Books. These are the rows. 

Say we wanted to change 'Leo Tolstoy' to 'Lev Nikolayevich Tolstoy' table. The following 

statement shows, how to accomplish this. 

mysql> UPDATE Books SET Author='Lev Nikolayevich Tolstoy' 

    -> WHERE Id=1; 

The SQL statement sets the author column to 'Lev Nikolayevich Tolstoy' for the column 

with Id=1. 

mysql> SELECT * FROM Books WHERE Id=1; 

+----+---------------+--------------------------+ 

| Id | Title         | Author                   | 

+----+---------------+--------------------------+ 

|  1 | War and Peace | Lev Nikolayevich Tolstoy | 

+----+---------------+--------------------------+ 

The row is correctly updated. 

 

Some administrative commands 

  

MySQL provides various administration features/tools to configure the MySQL server. These 

includes server maintenance, database backup, MySQL security, user management, start 

up/shutdown, replication management, Configuration of parameters (resource management), 

check performance/ status etc. 

Creating and grant permissions to a User 



Users information of MySQL exists in a database named mysql and the tables named 

user.Privileges of user exists in different tables according to privilege level on different database 

although the main privileges are in user table itself. 

There are two ways for creating a basic user for accessing mysql server: 

1. Create user command: 

To create a new userthat connects from with the password user_password , you can use 

the statement as follows: 

     CREATE USER username@localhostIDENTIFIED BY ‘user_password’ ; 

To allow user to connect from any host you use the% wildcard, which means any host. 

     CREATE USER username@%IDENTIFIED BY ‘user_password’ ;  

2. Insert command: 

To create a new userthat connects from with the password user_password , you can use 

the statement as follows: 

     INSERT INTO user 

(host,user,password)VALUES('localhost',’username’,PASSWORD(‘user_password'));  

To allow user to connect from every host you can use the % wildcard, which means all hosts. 

      INSERT INTO user 

(host,user,password)VALUES('localhost',’username’,PASSWORD(‘user_password')); 

The above two methods create the basic user for connecting to MySQL server. Although 

MySQL provides the user management according to the privileges given to the specified user for 

the security measures. 

For example: If your sales teamneeds to analyze the data then you should create a read user for 

that team and not giving all other privileges to them. For read only you have to give only select 

permissions to them with the following command: 

? 

1 

2 

3 

CREATE USER user_sales@%IDENTIFIED BY ‘sales password’ ; 

Grant select on *.* to user_sales@% ; 

Flush privileges; 

This grant statement gives only select permission on all the database for analyzing purpose to 

user_sales user. 

MySQL Administration provides various kinds of privileges to separate out the user and hence 

improve the security through proper user management. Some important privileges are as follows: 

Select_priv:  For only reading/selecting the data. 

Insert_priv: For only insertion of the data on the databases. 

http://www.wideskills.com/mysql/mysql-administration


Delete_priv: Allow only deleting the data. 

Create_priv: For creating a database or a table on MySQL server. 

Drop_priv: For dropping any specified table/database. 

Grant_priv: Allow to give permission to any other user or able to create a new user. 

File_priv: Allow to create a file from the output command and write the data out from the 

MySQL sever. 

Alter_priv: Allow to change the schema of the existing tables. 

Process_priv: To check the running process on the server, basic command is show processlist. 

Shutdown_priv: Allow user to stop/start the MySQL Process. 

Index_priv: Allow user to create indexes on the tables. 

Reload_priv:To apply the changes in user management at that time. 

All the above privileges can have a value of yes or no by the flags= ‘Y’ or ‘N’. You can give the 

privileges using the grant statement. 

For Example if we need to create a user having select, insert, update privileges on the test 

database only for localhost. 

       Grant select, insert, update on test.* to user123@% ; 

If a user with name user123 is not exists in the database then a new user with blank password is 

created automatically. So the grant command also works to directly create the user as: 

       Grant select, insert, update on test.* to user123@% identified by password(‘password123’); 

Handling Server Status  

MySQL Administration allows to start, stop, restart and checkthe status of the MySQL server. It 

provides a tool called mysqladmin to do so with the following commands: 

? 

1 

2 

3 

4 

5 

6 

To shut down the running MySQL server: 

root@localhost#./mysqladmin -u root -p shutdown 

Enter password:******** 

  

To start the MySQL server: 

root@localhost#./safe_mysqld& 

And if you already add the mysql.server(mysqld daemon) file to default location /etc/init.d as 

specified in installation steps then you can start, stop, restart and check the status as: 

For start 

http://www.wideskills.com/mysql/mysql-administration


      root@localhost# /etc/init.d/mysqld  start 

For stop 

      root@localhost# /etc/init.d/mysqld  stop 

For restart 

      root@localhost# /etc/init.d/mysqld  restart 

For checking the status 

     root@localhost# /etc/init.d/mysqld  status 

NOTE:  Use the above methods to stop the MySQL server and not kill the process ID directly as 

it causes the MySQL tables to crash which is very difficult to repair. 

Administrative Commands 

There are certain administrative commands run by database administrator on routine basis or on 

requirement basis of the business or application. For example some business/Application 

requires there tables to be checked at every night for data inconsistency, so we need to run check 

table and optimize them for eliminating any holes at the physical level for best performance. But 

we can’t run all commands in every scenario because in some cases the database is of 24*7 hour 

nature and there is no downtime so we can’t run optimize and check at the runtime to avoid 

transaction locking. 

There are some commands related to security like updating passwords, updating bind-address, 

changing permission/grants and there are some commands related to monitoring the database 

system performance like show variables, show processlist, show full processlist, bechmarking 

etc. 

Update user password:You can use the update command to change the password of the user in 

mysql as: 

       Update mysql.user set password = ‘NEW_PASSWORD’ where user = ‘username’ and 

host=’hostname’ 

NOTE: Always give username and hostname both to avoid updation of more than one 

row.Because the username and hostname define uniqueness on combination. 

Set variables: SET is a admin command to set variables in the MySQL server. There are two 

types of variables session and global variables that can be set with this simple set command. For 

example you can skip slave error in mysql as: 

       SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1 ; 

Analyze table: This command is used for statistics of the table. It checks for the key distribution 

of the table and then stores the relevant values into the information_schema (contains meta 

information of the tables). This command is generally used after alter queries to change engine or 

some other column types. Command: 

       Analyze table table_name;   

Repair table: This command is use to repair the table as the name indicates. Repair in MySQL 

means to correct any faulty key/index in the table or any row corruption due to which whole 



table act abnormally. NOTE: Repair table may changes your row count and deleted some 

corrupted data. The repair command: 

      Repair table table_name;    

Optimize table: This command is used to optimize table for better performance, it eliminates 

any present holes in the data or index so that provide fast access to the data, rebuilt indexes in the 

database. Optimize can be run as: 

      Optimize table table_name;        

Kill query: You can kill a query during its execution. For this you can pass the kill query with 

query id as the parameter in the command. The query id is shown in the processlist output. For 

example: 

? 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

mysql> show processlist; 

+----+------+-----------------+-----------+---------+------+-------------+----------------------------------

+ 

| Id | User | Host            | db        | Command | Time | State       | Info                             | 

+----+------+-----------------+-----------+---------+------+-------------+----------------------------------

+ 

| 19 | root | localhost:55107 | town_list | Query   |    0 | System lock | alter table toen 

engine='innodb' | 

+----+------+-----------------+-----------+---------+------+-------------+----------------------------------

+ 

2 rows in set (0.00 sec) 

Here the query id is 19 for the command ― alter table toen engine=’innodb’ ―. 

So you can kill the query in middle as: 

mysql> kill 19 ; 

Show grants: Grants means the privileges to a mysql user, you can see the grant of any user by 

the help of show grants command, for this you need to pass the user and its host as it uniquely 

defines the user. The show grants command can be used as: 

? 

1 

2 

mysql> show grants for greg@xxx.xxx.xxx.xxx ; 

GRANT SELECT, INSERT, UPDATE, DELETE, DROP on `test`.* TO ‘greg'@'xxx.xxx.xxx.xxx' 

http://www.wideskills.com/mysql/mysql-administration
http://www.wideskills.com/mysql/mysql-administration


3 Here greg is the username and xxx.xxx.xxx.xxx is the host name for greg. 

Show variables: This command is used to check the system variables at the current time. These 

are default variables or we can set them in the configuration file of MySQL server. The 

command to show the session or global variables are: 

? 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

<span style="font-size: 13px; line-height: 20.0063037872314px;">For global: 

</span>mysql> show global variables like 'join_buffer_size' ; 

  

Variable_name     Value     

join_buffer_size   536870912 

1 row in set (0.00 sec) 

  

For session: 

mysql> show session variables like 'join_buffer_size' ; 

Variable_name     Value     

join_buffer_size   12480970 

1 row in set (0.00 sec) 

  

Table Joins 

SQL JOIN 

A JOIN clause is used to combine rows from two or more tables, based on a related column 

between them. 

Let's look at a selection from the "Orders" table: 

OrderID CustomerID OrderDate 

http://www.wideskills.com/mysql/mysql-administration


10308 2 1996-09-18 

10309 37 1996-09-19 

10310 77 1996-09-20 

Then, look at a selection from the "Customers" table: 

CustomerID CustomerName ContactName Country 

1 Alfreds Futterkiste Maria Anders Germany 

2 Ana Trujillo Emparedados y helados Ana Trujillo Mexico 

3 Antonio Moreno Taquería Antonio Moreno Mexico 

Notice that the "CustomerID" column in the "Orders" table refers to the "CustomerID" in the 

"Customers" table. The relationship between the two tables above is the "CustomerID" column. 

Then, we can create the following SQL statement (that contains an INNER JOIN), that selects 

records that have matching values in both tables: 

Example 

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate 

FROM Orders 

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;  

and it will produce something like this: 



OrderID CustomerName OrderDate 

10308 Ana Trujillo Emparedados y helados 9/18/1996 

10365 Antonio Moreno Taquería 11/27/1996 

10383 Around the Horn 12/16/1996 

10355 Around the Horn 11/15/1996 

10278 Berglunds snabbköp 8/12/1996 

 

Different Types of SQL JOINs 

Here are the different types of the JOINs in SQL: 

 (INNER) JOIN: Returns records that have matching values in both tables 

 LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records 

from the right table 

 RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched 

records from the left table 

 FULL (OUTER) JOIN: Returns all records when there is a match in either left or right 

table 



    

   

 

Test Yourself With Exercises 

Exercise: 

Insert the missing parts in the JOIN clause to join the two tables Orders and Customers, using 

the CustomerID field in both tables as the relationship between the two tables. 

SELECT * 

FROM Orders 

LEFT JOIN Customers 

= ; 

 

 

 

 

 

Loading and Dumping a Database. 

We can load a database or otherwise execute SQL commands from a file. We simply put the 

commands or database into a file—let's call it mystuff.sql—and load it in with this command: 

$ mysql people < mystuff.sql  



We can also dump out a database into a file with this command: 

$ mysqldump people > entiredb.sql  

For fun, try the mysqldump command with the people database (a gentle reminder: the password 

is LampIsCool): 

$ mysqldump -uapache -p people  

Enter password:  

Notice that this outputs all the SQL needed to create the table and insert all the current records. 

For more information, see man mysqldump. 

< Back Page 5 of 7 Next > 

 + Share This  

 � Save To Your Account 

Introduction to mysqldump tool 

The mysqldump tool allows you to make a backup of one or more databases by generating a text 

file that contains SQL statements which can re-create the databases from scratch. 

The mysqldump tool is located in the root/bin directory of the MySQL installation directory. 

To access the mysqldump tool, you navigate to the root/bin folder and use 

the mysqldump command with the following options. 

Here are the common mysqldump options: 

add-drop-table 

Includes a DROP TABLE statement for each table in the database. 

add-locks 

Includes LOCK TABLES and UNLOCK TABLES statements before and after 

each INSERT statement. It improves the data restoration speed from the dump file. 

all-databases 

Creates a dump of all databases on the MySQL server. 

https://www.informit.com/articles/article.aspx?p=31474&seqNum=4
https://www.informit.com/articles/article.aspx?p=31474&seqNum=6
http://www.addthis.com/bookmark.php
https://www.informit.com/articles/article.aspx?p=31474&seqNum=5#addToWishList
https://www.mysqltutorial.org/mysql-table-locking/
https://www.mysqltutorial.org/mysql-insert-statement.aspx


create-options 

Includes ENGINE and CHARSET options in the CREATE TABLE statement for each table. 

databases 

Creates a dump of one or more databases. 

 

 

 

 

https://www.mysqltutorial.org/mysql-create-table/


UNIT-III 
 

PHPIntroduction–GeneralSyntacticCharacteristics–

PHPScripting–Commentingyour code –

Primitives,OperationsandExpressions–PHPVariables–

Operationsand Expressions-Controlstatement–Array–

Functions-BasicFormProcessing–Fileand FolderAccess – 

Cookies– Sessions– DatabaseAccess with PHP(MY SQL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

PHPIntroduction 

 

PHP is one of the most widely used server side 
scripting language for web development. 
Popular websites like Facebook, Yahoo, 
Wikipedia etc,  are developed using PHP. 

 

PHP is so popular because it's very simple to 
learn, code and deploy on server, hence it has 
been the first choice for beginners since 
decades. 

 

What is PHP? 

PHP stands for Hypertext Pre-Processor. 
PHP is a scripting language used to develop 
static and dynamic webpages and web 
applications. 

 

 

 



 

 

Here are a few important things you must know 
about PHP: 

1. PHP is an Interpreted language, hence it 
doesn't need a compiler. 

2. To run and execute PHP code, we need 
a Web server on which PHP must be 
installed. 

3. PHP is a server side scripting language, 
which means that PHP is executed on the 
server and the result is sent to the browser 
in plain HTML. 

4. PHP is open source and free. 

Is PHP the right language to learn? 

If you are still confused about whether you 
should learn PHP or is PHP the right language 
for your web project, then here we have listed 
down some of the features and usecases of 
PHP language, which will help you understand 
how simple yet powerful PHP scripting 
language is and why you should learn it. 



1. PHP is open source and free, hence 
you can freely download, install and start 
developing using it. 

2. PHP has a very simple and easy to 
understand syntax, hence the learning 
curve is smaller as compared to other 
scripting languages like JSP, ASP etc. 

3. PHP is cross platform, hence you can 
easily develop and move/deploy your PHP 
code/project to almost all the major 
operating systems like Windows, Linux, Mac 
OSX etc. 

4. All the popular web hosting services 
support PHP. Also the web hosting plans 
for PHP are generally the amongst the 
cheapest plans becasue of its popularity. 

5. With PHP, you can create static and 
dynamic webpages, perform file handling 
operations, send emails, access and modify 
browser cookies, and almost everything else 
that you might want to implement in your 
web project. 

6. PHP is fast as compared to other 
scripting languages like JSP and ASP. 



7. PHP has in-built support for MySQL, 
which is one of the most widely used 
Database management system. 

These are some of the main features of PHP, 
while as you will learn the language you will 
realise that apart from these features, 

 

Uses of PHP 

To further fortify your trust in PHP, here are a 
few applications of this amazing scripting 
language: 

1. It can be used to create Web 
applications like Social 
Networks(Facebook, Digg), 
Blogs(Wordpress, Joomla), eCommerce 
websites(OpenCart, Magento etc.) etc. 

2. Comman Line Scripting. You can write 
PHP scripts to perform different operations 
on any machine, all you need is a PHP 
parser for this. 

3. Create Facebook applications and 
easily integrate Facebook plugins in your 



website, using Facebook's PHP SDK. 
Check this link for more information. 

4. Sending Emails or building email 
applications because PHP provides with a 
robust email sending function. 

 

 

Characteristics of PHP 

Five important characteristics make PHP's 
practical nature possible − 

 Simplicity 

 Efficiency 

 Security 

 Flexibility 

 Familiarity 

 Simple, Familiar and ease of use: Its 
popularly known for its simplicity, familiarity 
and easy to learn the language as the 
syntax is similar to that of „C‟ or Pascal 
language. 
So the language is very logical and well 

https://developers.facebook.com/docs/reference/php


organizedgeneral-purpose programming 
language.  

 Even people with a normal programming 
background can easily understand and 
capture the use of language.  

 PHP is very advantageous for new users as 
its a very reliable, fluent, organized, clean, 
demandable and efficient. 

 

The main strength of PHP is the availability 
of rich pre-defined functions. The core 
distribution helps the developers implement 
dynamic websites very easily with secured 
data. PHP applications are very easy to 
optimize. 

 Loosely typed language: PHP encourages 
the use of variables without declaring its 
data types. So this is taken care at the 
execution time depending on the value 
assigned to the variable. Even the variable 
name can be changed dynamically. 

 Flexibility: PHP is known for its flexibility 
and embedded nature as it can be well 
integrated with HTML, XML, Javascript and 



many more. PHP can run on multiple 
operatingsystems 
like Windows, Unix, Mac OS, Linux, etc. 
The PHP scripts can easily run on any 
device like laptops, mobiles, tablets, and 
computer. It is very comfortably integrated 
with various Databases. Desktop 
applications are created using advanced 
PHP features. The executable PHP can also 
be run on command-line as well as directly 
on the machine. Heavyweight applications 
can be created without a server or browser. 
It also acts as an excellent interface with 
relational databases. 
 

 Open Source: All PHP frameworks are 
open sources, No payment is required for 
the users and its completely free. User can 
just download PHP and start using for their 
applications or projects. Even in companies, 
the total cost is reduced for software 
development providing more 
reliability and flexibility. 



It supports a popular range of databases like 
MySQL, SQLite, Oracle, Sybase, Informix, 
andPostgreSQL. 

 
PHP provides libraries to access these 
databases to interact with web servers.  

 
 
 

 Cross-platform compatibility: PHP is 
multi-platform and known for its portability 
as it can run on any operating System and 
windows environments. The most common 
are XAMPP (Windows, Apache 
Server, MySQL, Perl, and PHP) and LAMP 
(Linux, Apache, MySQL, PHP).  

 As PHP is platform-independent, it‟s very 
easy to integrate with various databases 
and other technologies without re-
implementation. It effectively saves a lot of 
energy, time and money. 

 Error reporting and exceptions: 



PHP supports much errors reporting 
constants to generate errors and relevant 
warnings at run time. 
 

  
 Fast and efficient performance: Users 

generally prefer fast loading websites. 
For any web development, speed becomes 
an important aspect which is taken care of 
by PHP. 

PHP scripts are faster than other scripting 
languages like ASP.NET, PERL, and JSP.  
 
Maintenance: When dealing with big 
projects, maintenance of code is also an 
important aspect of the web development 
process. There are many PHP frameworks 
for example MVC (Model View Controller) 
which makes development and maintenance 
of code easier. Files belonging to the 
different module are maintained separately. 
 

 Third-party application support and 
security: Many PHP‟s predefined functions 
support data encryption options keeping it 



more secure. Even the users can use third-
party applications to secure data. 

 Real time access monitoring: PHP also 
provides a summary of user‟s recent logging 
accesses. 

 Memory and CPU usage 
information: PHP can provide memory 
usage information from functions 
like memory_get_usage() or memory_get
_peak_usage(), which can help the 
developers optimize their code. In the 
similar way, the CPU power consumed by 
any script can be retrieved for further 
optimization. 

 Object oriented features: PHP supports 
object-oriented programming features, 
resulting in increased speed and introducing 
added features like data encapsulation and 
inheritance at many levels. 

 Magic Constants: PHP provides many 
built-in magic methods starting 
with __(double underscore) which are 
called during specific events. 

 

 



PHP Script 

PHP was established as the 
leading website programming language several 
years ago, even though it is much younger than 
other languages. The cause of the extensive 
popularity the PHP distribution enjoys is the 
easy-to-grasp syntax, allowing even people 
with no coding experience whatsoever to 
quickly enter into the PHP realm. And it is 
exactly the easily created scripts that make 
PHP so popular among the Internet community. 

PHP Scripts 
PHP scripts and database interaction 
PHP scripts and email 
 

A sample PHP script: 

<?php 
echo '<p>This is a PHP script</p>'; 
?> 
 

PHP scripts can be created using any basic text 

editor or HTML editing software tool. Each 

https://www.ntchosting.com/php/
https://www.ntchosting.com/encyclopedia/internet/website/
https://www.ntchosting.com/internet/
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php-script/#PHP_Scripts
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php-script/#PHP_scripts_and_database_interaction
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php-script/#PHP_scripts_and_email


PHP file must be saved with a .php file 

extension in order to be recognized as a 

functioning PHP script.  

When the Apache server has the appropriate 

settings, PHP code can be recognized also in 

.html files.  

PHP in an HTML file 

<html> 
<head></head> 
<body class="page_bg"> 
Hello, today is <?php echo date('l, F jS, Y'); ?>. 
</body> 
</html> 
 
PHP scripts and database interaction 
The PHP language has been especially 
designed to enable the development of 
dynamic and interactive web pages. 
PHP offers excellent connectivity with 
many databases,among 
them MySQL, PostgreSQL and Generic ODBC. 
The common combination between the PHP 
v.4 or the PHP v.5 script and the MySQL 

https://www.ntchosting.com/internet/file.html
https://www.ntchosting.com/apache-web-server.html
https://www.ntchosting.com/databases/database.html
https://www.ntchosting.com/mysql/
https://www.ntchosting.com/postgresql/
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php4/
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php4/
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php4/
https://www.ntchosting.com/encyclopedia/scripting-and-programming/php/php5/


database is supported on almost every Linux-
based web server. 
 
Connecting to a MySQL database with a 
PHP script: 
<?php 
$dbhandle = mysql_connect('localhost', 
'phptest', '3579php'); 
if ($dbhandle) 
{ 
echo "Connected to MySQL Database<br>"; 
mysql_close($dbhandle); 
} else { 
echo "Unable to connect to MySQL 
Database<br>"; 
} 
?> 

 

PHP scripts and email 

As a web-oriented scripting language, PHP 
contains all the necessary functionalities to 
perform different Internet operations. It is 
exceptionally easy indeed to create a PHP 



script for connecting to remote servers, for 
checking email via POP3 or IMAP, for URL 
encoding, setting cookies, redirecting, etc. PHP 
is extensively used for the creation and 
operation of online forms and automated email 
services. 

Here you can see the combination of a pure 
HTML input form and a corresponding PHP 
script, which will handle the form‟s data. 

 

 

 

 

 

A sample HTML form: 

<html> 
<head><title>Example Form</title></head> 
<body> 
<form action="mail.php" method="POST"> 
<b>Email address</b><br> 

https://www.ntchosting.com/email/pop3-imap-email-account.html


<input type="text" name="email" size=40> 
<p><b>Subject</b><br> 
<input type="text" name="subject" size=40> 
<p><b>Message</b><br> 
<textarea cols=40 rows=10 
name="message"></textarea> 
<p><input type="submit" value=" Send your 
email "> 
</form> 
</body> 
</html> 
 

And here is the PHP code, which will handle 
and process the information: 

 
 

How to write comments in PHP 

Single Line Comments 

<?php 
echo"Hello World!"; // Output "Hello World!" 
?> 

Multi-line Comments 



<?php 
/* The following line of code 
will output the "Hello World!" message */ 
echo"Hello World!"; 
?> 
 
Primitives,OperationsandExpressions 

Variables 

Variables in PHP are represented by a dollar 
sign followed by the name of the variable. The 
variable name is case-sensitive. 

 

 

 

PHP supports eight primitive types: 

 Four scalar types: 
o boolean 
o integer 
o float (floating-point number, aka double) 
o string 

 Two compound types: 
o array 



o object 
 And finally three special types: 

o resource 
o NULL 
o callable 

// Integers: decimal, octal or hexadecimal 
$Var = 123; 
// Floating point 
$Var = 1.3e4; 
// Arrays or vectors 
$Var[2] = 123; 
// Text Strings 
$Var = "A Text String\n"; 
// Objects 
$Var = new oMyClass(); 

Constants 

A constant is an identifier (name) for a simple 
value. That value cannot change during the 
execution of the script. A constant is case-
sensitive by default. By convention, constant 
identifiers are always uppercase 

There are two built-in 
constants, TRUE and FALSE (case-



insensitive), which representthe two possible 
boolean values. 

Expressions 

Expressions are the most important building 
stones of PHP. The most basic forms of 
expressions are constants and variables. 

A very common type of expressions are 
comparison expressions. These expressions 
evaluate to either FALSE or TRUE. These 
expressions are most commonly used inside 
conditional execution, such as if statements. 

Operators 

 Operator Precedence 
 Arithmetic Operators 
 Assignment Operators 
 Bitwise Operators 
 Comparison Operators 
 Error Control Operators 
 Execution Operators 
 Incrementing/Decrementing Operators 
 Logical Operators 
 String Operators 



 Array Operators 
 Type Operators 

 
 
 
 
 
 

http://desarrolloweb.dlsi.ua.es/cursos/2012/web-programming-with-php/images/operators.png


 
PHP | Operators 

Operators are used to perform operations on 
some values.  

 Arithmetic Operators 
 Logical or Relational Operators 
 Comparison Operators 
 Conditional or Ternary Operators 
 Assignment Operators 
 Spaceship Operators (Introduced in PHP 7) 
 Array Operators 
 Increment/Decrement Operators 
 String Operators 

Let us now learn about each of these operators 
in details: 

Arithmetic Operators 
The arithmetic operators are use to perform 
simple mathematical operations like addition, 
subtraction, multiplication etc. Below is the list 
of arithmetic operators along with there syntax 
and operations, that PHP provides us: 

 



OPERATOR NAME SYNTAX OPERATION 

+ Addition $x + $y 

Sum the 

operands 

– Subtraction $x – $y 

Differences the 

operands 

* Multiplication $x * $y 

Product of the 

operands 

/ Division $x / $y 

Quotient of the 

operands 

** Exponentiation $x ** $y 

$x raised to the 

power $y 

% Modulus $x % $y 

Remainder of 

the operands 



<?php  

$x= 29;  

// variable 2  

$y= 4;  

// some arithmetic operations on   

echo($x+ $y), "\n";  

echo($x- $y), "\n";  

echo($x* $y), "\n";  

echo($x/ $y), "\n";  

echo($x% $y), "\n";  

?> 

Output: 

33 

25 

116 

7.25 

1 

Logical or Relational Operators 



These are basically used to operate with 
conditional statements and expressions.  

Here are the logical operators along with there 
syntax and operations, that PHP provides us: 

OPERATOR NAME SYNTAX OPERATION 

And 

Logical 

AND 

$x and 

$y 

True if both the 

operands are true 

else false 

Or 

Logical 

OR $x or $y 

True if either of the 

operand is true 

else false 

Xor 

Logical 

XOR 

$x xor 

$y 

True if either of the 

operand is true 

and false if both 

are true 



&& 

Logical 

AND 

$x 

&&$y 

True if both the 

operands are true 

else false 

|| 

Logical 

OR $x || $y 

True if either of the 

operand is true 

else false 

! 

Logical 

NOT !$x True if $x is false 

 

 

 

 

 

Example: 

<?php  



 $x= 50;  

$y= 30;  

 if($x== 50 and$y== 30)  

    echo"and Success \n";  

 if($x== 50 or$y== 20)  

    echo"or Success \n";  

   

if($x== 50 xor$y== 20)  

    echo"xor Success \n";  

   

if($x== 50 && $y== 30)  

    echo"&& Success \n";  

   

if($x== 50 || $y== 20)  

    echo"|| Success \n";  

   



if(!$z)  

    echo"! Success \n";  

 ?>   

Output: 

and Success  

or Success  

xor Success  

&& Success  

|| Success  

! Success  

 
 
 
 
 
 
 
Comparison Operators 
These operators are used to compare two 
elements and outputs the result in boolean 
form. Here are the comparison operators along 



with there syntax and operations, that PHP 
provides us: 

OPERATOR NAME SYNTAX OPERATION 

== Equal To 

$x == 

$y 

Returns True if 

both the operands 

are equal 

!= 

Not Equal 

To $x != $y 

Returns True if 

both the operands 

are not equal 

<> 

Not Equal 

To 

$x <> 

$y 

Returns True if 

both the operands 

are unequal 

=== Identical 

$x === 

$y 

Returns True if 

both the operands 



are equal and are 

of the same type 

!== 

Not 

Identical 

$x == 

$y 

Returns True if 

both the operands 

are unequal and 

are of different 

types 

< 

Less 

Than $x < $y 

Returns True if $x 

is less than $y 

> 

Greater 

Than $x > $y 

Returns True if $x 

is greater than $y 

<= 

Less 

Than or 

Equal To 

$x <= 

$y 

Returns True if $x 

is less than or 

equal to $y 



>= 

Greater 

Than or 

Equal To 

$x >= 

$y 

Returns True if $x 

is greater than or 

equal to $y 

 

 

Example: 

<?php  

$a= 80;  

$b= 50;  

$c= "80";  

// Here var_dump function has been used 

to   

// display structured information. We will 

learn   

// about this function in complete details in 

further  

// articles.  



var_dump($a== $c) + "\n";  

var_dump($a!= $b) + "\n";  

var_dump($a<> $b) + "\n";  

var_dump($a=== $c) + "\n";  

var_dump($a!== $c) + "\n";  

var_dump($a< $b) + "\n";  

var_dump($a> $b) + "\n";  

var_dump($a<= $b) + "\n";  

var_dump($a>= $b);  

   

?> 

Output: 

bool(true) 

bool(true) 

bool(true) 

bool(false) 

bool(true) 

bool(false) 



bool(true) 

bool(false) 

bool(true) 

Conditional or Ternary Operators 
These operators are used to compare two 
values and take either of the result 
simultaneously, depending on whether the 
outcome is TRUE or FALSE. These are also 
used as shorthand notation for if…else 
statement that we will read in the article on 
decision making. 
Syntax: 
$var = (condition)? value1 : value2; 

Here, condition will either evaluate to true or 
false. If the condition evaluates to True, then 
value1 will be assigned to the variable $var 
otherwise value2 will be assigned to it. 

OPERATOR NAME OPERATION 

?: Ternary 

If condition is true ? then $x : 

or else $y. This means that if 



condition is true then left result 

of the colon is accepted 

otherwise the result on right. 

Example: 

 

<?php  

 $x= -12;  

 echo($x> 0) ? 'The number is positive': 

'The number is negative';  

 ?> 

Output: 

The number is negative 

Assignment Operators 
These operators are used to assign values to 
different variable, with or without mid-
operations. Here are the assignment operators 
along with there syntax and operations, that 
PHP provides us: 

 



Example: 

 

<?php  

   

// simple assign operator  

$y= 75;  

echo$y, "\n";  

   

// add then assign operator  

$y= 100;  

$y+= 200;  

echo$y, "\n";  

   

// subtract then assign operator  



$y= 70;  

$y-= 10;  

echo$y, "\n";  

   

// multiply then assign operator  

$y= 30;  

$y*= 20;  

echo$y, "\n";  

   

// Divide then assign(quotient) operator  

$y= 100;  

$y/= 5;  

echo$y, "\n";  

   

// Divide then assign(remainder) operator  

$y= 50;  



$y%= 5;  

echo$y;  

   

?> 

Output: 

75 

300 

60 

600 

20 

0 

Array Operators 

These operators are used in case of 

arrays. Here are the array operators 

along with there syntax and 

operations, that PHP provides us: 

   

Example: 



<?php  

   

$x= array("k"=> "Car", "l"=> "Bike");  

$y= array("a"=> "Train", "b"=> "Plane");  

   

var_dump($x+ $y);  

var_dump($x== $y) + "\n";  

var_dump($x!= $y) + "\n";  

var_dump($x<> $y) + "\n";  

var_dump($x=== $y) + "\n";  

var_dump($x!== $y) + "\n";  

   

?> 

Output: 

array(4) { 

  ["k"]=> 

  string(3) "Car" 



  ["l"]=> 

  string(4) "Bike" 

  ["a"]=> 

  string(5) "Train" 

  ["b"]=> 

  string(5) "Plane" 

} 

bool(false) 

bool(true) 

bool(true) 

bool(false) 

bool(true) 

Increment/Decrement Operators 

These are called the unary operators 

as it work on single operands. These 

are used to increment or decrement 

values. 

 

 

   



Example: 

<?php  

x= 2;  

echo++$x, " First increments then prints 

\n";  

echo$x, "\n";  

   

$x= 2;  

echo$x++, " First prints then increments 

\n";  

echo$x, "\n";  

   

$x= 2;  

echo--$x, " First decrements then prints 

\n";  

echo$x, "\n";  

 



$x= 2;  

echo$x--, " First prints then decrements 

\n";  

echo$x;  

?> 

Output: 

3 First increments then prints  

3 

2 First prints then increments  

3 

1 First decrements then prints  

1 

2 First prints then decrements  

1 

String Operators 

Example: 

<?php  

$x= "Geeks";  



$y= "for";  

$z= "Geeks!!!";  

echo$x. $y. $z, "\n";  

$x.= $y. $z;  

echo$x;  

?> 

Output: 

GeeksforGeeks!!! 
GeeksforGeeks!!! 
 
 
 
 
 
 
 

 

PHP - Decision Making 



The if, elseif ...else and switch statements are 
used to take decision based on the different 
condition. 

You can use conditional statements in your 
code to make your decisions. PHP supports 
following three decision making statements − 

 

 if...else statement − use this statement if 
you want to execute a set of code when a 
condition is true and another if the condition 
is not true 

 elseif statement − is used with the if...else 
statement to execute a set of code if one of 
the several condition is true 



 switch statement − is used if you want to 
select one of many blocks of code to be 
executed, use the Switch statement. The 
switch statement is used to avoid long 
blocks of if..elseif..else code. 

The If...Else Statement 

If you want to execute some code if a condition 
is true and another code if a condition is false, 
use the if....else statement. 

Syntax 

if (condition) 
code to be executed if condition is true; 
else 
code to be executed if condition is false; 

Example 

The following example will output "Have a nice 
weekend!" if the current day is Friday, 
Otherwise, it will output "Have a nice day!": 

<html> 
<body> 
 
<?php 



         $d = date("D"); 
 
if($d =="Fri") 
            echo "Have a nice weekend!"; 
 
else 
            echo "Have a nice day!"; 
?> 
 
</body> 
</html> 

 

 

 

 

 

 

<html> 
<body> 
 
<?php 



         $d = date("D"); 
 
if($d =="Fri") 
            echo "Have a nice weekend!"; 
 
         elseif ($d =="Sun") 
            echo "Have a nice Sunday!"; 
 
else 
            echo "Have a nice day!"; 
?> 
 
</body> 
</html> 

It will produce the following result – 

Have a nice Weekend! 

 

 

The Switch Statement 

If you want to select one of many blocks of 
code to be executed, use the Switch 
statement. 



The switch statement is used to avoid long 
blocks of if..elseif..else code. 

Syntax 

switch (expression){ 
   case label1: 
code to be executed if expression = label1; 
      break;   
 
   case label2: 
code to be executed if expression = label2; 
      break; 
      default: 
 
code to be executed 
   if expression is different  
   from both label1 and label2; 
} 

Example 

<html> 
<body> 
 
<?php 
         $d = date("D"); 
 



switch($d){ 
case"Mon": 
               echo "Today is Monday"; 
break; 
 
case"Tue": 
               echo "Today is Tuesday"; 
break; 
 
case"Wed": 
               echo "Today is Wednesday"; 
break; 
 
case"Thu": 
               echo "Today is Thursday"; 
break; 
 
case"Fri": 
               echo "Today is Friday"; 
break; 
 
case"Sat": 
               echo "Today is Saturday"; 
break; 
 



case"Sun": 
               echo "Today is Sunday"; 
break; 
 
default: 
               echo "Wonder which day is this ?"; 
} 
?> 
 
</body> 
</html> 

 
It will produce the following result – 
Today is Monday 

PHP - Loop Types 

Loops in PHP are used to execute the same 
block of code a specified number of times. 
PHP supports following four loop types. 

 for − loops through a block of code a 
specified number of times. 

 while − loops through a block of code if and 
as long as a specified condition is true. 



 do...while − loops through a block of code 
once, and then repeats the loop as long as 
a special condition is true. 

 foreach − loops through a block of code for 
each element in an array. 

We will discuss 
about continue and break keywords used to 
control the loops execution. 

The for loop statement 

The for statement is used when you know how 
many times you want to execute a statement or 
a block of statements. 

 



Syntax 

for (initialization; condition; increment){ 
code to be executed; 
} 

The initializer is used to set the start value for 
the counter of the number of loop iterations. A 
variable may be declared here for this purpose 
and it is traditional to name it $i. 

Example 

The following example makes five iterations 
and changes the assigned value of two 
variables on each pass of the loop − 

<html> 
<body> 
 
<?php 
         $a =0; 
         $b =0; 
 
for( $i =0; $i<5; $i++){ 
            $a +=10; 
            $b +=5; 
} 



 
         echo ("At the end of the loop a = $a and b 
= $b"); 
?> 
 
</body> 
</html> 

This will produce the following result − 

At the end of the loop a = 50 and b = 25 

The while loop statement 

The while statement will execute a block of 
code if and as long as a test expression is true. 

If the test expression is true then the code 
block will be executed. After the code has 
executed the test expression will again be 
evaluated and the loop will continue until the 
test expression is found to be false. 



 

Syntax 

while (condition) { 
code to be executed; 
} 

Example 

This example decrements a variable value on 
each iteration of the loop and the counter 
increments until it reaches 10 when the 
evaluation is false and the loop ends 

<html> 
<body> 
 



<?php 
         $i =0; 
         $num =50; 
 
while( $i <10){ 
            $num--; 
            $i++; 
} 
 
         echo ("Loop stopped at i = $i and num = 
$num"); 
?> 
 
</body> 
</html> 

This will produce the following result − 

Loop stopped at i = 10 and num = 40 

The do...while loop statement 

The do...while statement will execute a block of 
code at least once - it then will repeat the loop 
as long as a condition is true. 

Syntax 

do { 



code to be executed; 
} 
while (condition); 

Example 

The following example will increment the value 
of i at least once, and it will continue 
incrementing the variable i as long as it has a 
value of less than 10 – 

 

 

 

 

<html> 
<body> 
 
<?php 
         $i =0; 
         $num =0; 
 
do{ 
            $i++; 
} 
 



while( $i <10); 
         echo ("Loop stopped at i = $i"); 
?> 
 
</body> 
</html> 

This will produce the following result – 
Loop stopped at i = 10 

The foreach loop statement 

The foreach statement is used to loop through 
arrays. For each pass the value of the current 
array element is assigned to $value and the 
array pointer is moved by one and in the next 
pass next element will be processed. 

Syntax 

Foreach (array as value) { 
code to be executed; 
} 

Example 

<html> 
<body> 
 



<?php 
         $array = array(1,2,3,4,5); 
 
foreach( $array as $value ){ 
            echo "Value is $value <br />"; 
} 
?> 
 
</body> 
</html> 

This will produce the following result − 

Value is 1 
Value is 2 
Value is 3 
Value is 4 
Value is 5 

The break statement 

The PHP break keyword is used to terminate 
the execution of a loop prematurely. 

The break statement is situated inside the 
statement block. It gives you full control and 
whenever you want to exit from the loop you 
can come out. After coming out of a loop 



immediate statement to the loop will be 
executed. 

 

Example 

In the following example condition test 
becomes true when the counter value reaches 
3 and loop terminates. 

<html> 
<body> 
 
<?php 
         $i =0; 
 
while( $i <10){ 
            $i++; 
if( $i ==3)break; 



} 
         echo ("Loop stopped at i = $i"); 
?> 
 
</body> 
</html> 

This will produce the following result − 

Loop stopped at i = 3 

The continue statement 

The PHP continue keyword is used to halt the 
current iteration of a loop but it does not 
terminate the loop. 

Just like the break statement 
the continue statement is situated inside the 
statement block containing the code that the 
loop executes, preceded by a conditional test. 
For the pass 
encountering continue statement, rest of the 
loop code is skipped and next pass starts. 



 

Example 

In the following example loop prints the value 
of array but for which condition becomes true it 
just skip the code and next value is printed. 

 

<html> 
<body> 
 
<?php 
         $array = array(1,2,3,4,5); 
 
foreach( $array as $value ){ 
if( $value ==3)continue; 
            echo "Value is $value <br />"; 
} 
?> 



 
</body> 
</html> 

This will produce the following result − 

Value is 1 
Value is 2 
Value is 4 
Value is 5 
PHP - Arrays 

An array is a data structure that stores one or 
more similar type of values in a single value. 
For example if you want to store 100 numbers 
then instead of defining 100 variables its easy 
to define an array of 100 length. 

There are three different kind of arrays and 
each array value is accessed using an ID c 
which is called array index. 

 Numeric array − An array with a numeric 
index. Values are stored and accessed in 
linear fashion. 

 Associative array − An array with strings 
as index. This stores element values in 



association with key values rather than in a 
strict linear index order. 

 Multidimensional array − An array 
containing one or more arrays and values 
are accessed using multiple indices 

NOTE − Built-in array functions is given in 
function reference PHP Array Functions 

 

Numeric Array 

These arrays can store numbers, strings and 
any object but their index will be represented 
by numbers. By default array index starts from 
zero. 

Example 

Following is the example showing how to 
create and access numeric arrays. 

Here we have used array() function to create 
array. This function is explained in function 
reference. 

 

<html> 

https://www.tutorialspoint.com/php/php_array_functions.htm


<body> 
 
<?php 
/* First method to create array. */ 
         $numbers = array(1,2,3,4,5); 
 
foreach( $numbers as $value ){ 
            echo "Value is $value <br />"; 
} 
 
/* Second method to create array. */ 
         $numbers[0]="one"; 
         $numbers[1]="two"; 
         $numbers[2]="three"; 
         $numbers[3]="four"; 
         $numbers[4]="five"; 
 
foreach( $numbers as $value ){ 
            echo "Value is $value <br />"; 
} 
?> 
 
</body> 
</html> 



This will produce the following result − 

Value is 1  
Value is 2  
Value is 3  
Value is 4  
Value is 5  
Value is one  
Value is two  
Value is three  
Value is four  
Value is five  

Associative Arrays 

The associative arrays are very similar to 
numeric arrays in term of functionality but they 
are different in terms of their index. Associative 
array will have their index as string so that you 
can establish a strong association between key 
and values. 

To store the salaries of employees in an array, 
a numerically indexed array would not be the 
best choice. Instead, we could use the 
employees names as the keys in our 



associative array, and the value would be their 
respective salary. 

NOTE − Don't keep associative array inside 
double quote while printing otherwise it would 
not return any value. 

Example 

 

<html> 
<body> 
 
<?php 
/* First method to associate create array. */ 
         $salaries = 
array("mohammad"=>2000,"qadir"=>1000,"zara
"=>500); 
 
         echo "Salary of mohammad is ". 
$salaries['mohammad']."<br />"; 
         echo "Salary of qadir is ".  
$salaries['qadir']."<br />"; 
         echo "Salary of zara is ".  
$salaries['zara']."<br />"; 
 



/* Second method to create array. */ 
         $salaries['mohammad']="high"; 
         $salaries['qadir']="medium"; 
         $salaries['zara']="low"; 
 
         echo "Salary of mohammad is ". 
$salaries['mohammad']."<br />"; 
         echo "Salary of qadir is ".  
$salaries['qadir']."<br />"; 
         echo "Salary of zara is ".  
$salaries['zara']."<br />"; 
?> 
 
</body> 
</html> 

This will produce the following result − 

Salary of mohammad is 2000 
Salary of qadir is 1000 
Salary of zara is 500 
Salary of mohammad is high 
Salary of qadir is medium 
Salary of zara is low 

Multidimensional Arrays 



A multi-dimensional array each element in the 
main array can also be an array. And each 
element in the sub-array can be an array, and 
so on. Values in the multi-dimensional array 
are accessed using multiple index. 

Example 

In this example we create a two dimensional 
array to store marks of three students in three 
subjects − 

This example is an associative array, you can 
create numeric array in the same fashion. 

<html> 
<body> 
 
<?php 
         $marks = array( 
"mohammad"=> array ( 
"physics"=>35, 
"maths"=>30,  
"chemistry"=>39 
), 
 
"qadir"=> array ( 



"physics"=>30, 
"maths"=>32, 
"chemistry"=>29 
), 
 
"zara"=> array ( 
"physics"=>31, 
"maths"=>22, 
"chemistry"=>39 
) 
); 
 
/* Accessing multi-dimensional array values */ 
         echo "Marks for mohammad in physics : "; 
         echo $marks['mohammad']['physics']."<br 
/>"; 
 
         echo "Marks for qadir in maths : "; 
         echo $marks['qadir']['maths']."<br />"; 
 
         echo "Marks for zara in chemistry : "; 
         echo $marks['zara']['chemistry']."<br />"; 
?> 
 
</body> 



</html> 

This will produce the following result − 

Marks for mohammad in physics : 35 
Marks for qadir in maths : 32 
Marks for zara in chemistry : 39 

PHP - Functions 

PHP functions are similar to other 
programming languages. A function is a piece 
of code which takes one more input in the form 
of parameter and does some processing and 
returns a value. 

You already have seen many functions 
like fopen() and fread() etc. They are built-in 
functions but PHP gives you option to create 
your own functions as well. 

There are two parts which should be clear to 
you − 

 Creating a PHP Function 

 Calling a PHP Function 

In fact you hardly need to create your own PHP 
function because there are already more than 
1000 of built-in library functions created for 



different area and you just need to call them 
according to your requirement. 

Please refer to PHP Function Reference for a 
complete set of useful functions. 

Creating PHP Function 

Its very easy to create your own PHP function. 
Suppose you want to create a PHP function 
which will simply write a simple message on 
your browser when you will call it. Following 
example creates a function called 
writeMessage() and then calls it just after 
creating it. 

Note that while creating a function its name 
should start with keyword function and all the 
PHP code should be put inside { and } braces 
as shown in the following example below − 

<html> 
 
<head> 
<title>Writing PHP Function</title> 
</head> 
 
<body> 

https://www.tutorialspoint.com/php/php_function_reference.htm


 
<?php 
/* Defining a PHP Function */ 
function writeMessage(){ 
            echo "You are really a nice person, 
Have a nice time!"; 
} 
 
/* Calling a PHP Function */ 
         writeMessage(); 
?> 
 
</body> 
</html> 

This will display following result − 

You are really a nice person, Have a nice time! 

PHP Functions with Parameters 

PHP gives you option to pass your parameters 
inside a function. You can pass as many as 
parameters your like. These parameters work 
like variables inside your function. Following 
example takes two integer parameters and add 
them together and then print them. 



Live Demo 

<html> 
 
<head> 
<title>Writing PHP Function with 
Parameters</title> 
</head> 
 
<body> 
 
<?php 
function addFunction($num1, $num2){ 
            $sum = $num1 + $num2; 
            echo "Sum of the two numbers is : 
$sum"; 
} 
 
         addFunction(10,20); 
?> 
 
</body> 
</html> 

This will display following result − 

http://tpcg.io/qZsybl


Sum of the two numbers is : 30 

Passing Arguments by Reference 

It is possible to pass arguments to functions by 
reference. This means that a reference to the 
variable is manipulated by the function rather 
than a copy of the variable's value. 

Any changes made to an argument in these 
cases will change the value of the original 
variable. You can pass an argument by 
reference by adding an ampersand to the 
variable name in either the function call or the 
function definition. 

Following example depicts both the cases. 

Live Demo 

<html> 
 
<head> 
<title>Passing Argument by Reference</title> 
</head> 
 
<body> 
 

http://tpcg.io/iAScZk


<?php 
function addFive($num){ 
            $num +=5; 
} 
 
function addSix(&$num){ 
            $num +=6; 
} 
 
         $orignum =10; 
         addFive( $orignum ); 
 
         echo "Original Value is $orignum<br />"; 
 
         addSix( $orignum ); 
         echo "Original Value is $orignum<br />"; 
?> 
 
</body> 
</html> 

This will display following result − 

Original Value is 10 
Original Value is 16  

PHP Functions returning value 



A function can return a value using 
the return statement in conjunction with a 
value or object. return stops the execution of 
the function and sends the value back to the 
calling code. 

You can return more than one value from a 
function using return array(1,2,3,4). 

Following example takes two integer 
parameters and add them together and then 
returns their sum to the calling program. Note 
that return keyword is used to return a value 
from a function. 

 

<html> 
 
<head> 
<title>Writing PHP Function which returns 
value</title> 
</head> 
 
<body> 
 
<?php 
function addFunction($num1, $num2){ 



            $sum = $num1 + $num2; 
return $sum; 
} 
         $return_value = addFunction(10,20); 
 
         echo "Returned value from the function : 
$return_value"; 
?> 
 
</body> 
</html> 

This will display following result − 

Returned value from the function : 30 

Setting Default Values for Function Parameters 

You can set a parameter to have a default 
value if the function's caller doesn't pass it. 

Following function prints NULL in case use 
does not pass any value to this function. 

Live Demo 

<html> 
 
<head> 

http://tpcg.io/csUr3k


<title>Writing PHP Function which returns 
value</title> 
</head> 
 
<body> 
 
<?php 
function printMe($param = NULL){ 
print $param; 
} 
 
         printMe("This is test"); 
         printMe(); 
?> 
 
</body> 
</html> 

This will produce following result − 

This is test 

Dynamic Function Calls 

It is possible to assign function names as 
strings to variables and then treat these 
variables exactly as you would the function 



name itself. Following example depicts this 
behaviour. 

Live Demo 

<html> 
 
<head> 
<title>Dynamic Function Calls</title> 
</head> 
 
<body> 
 
<?php 
function sayHello(){ 
            echo "Hello<br />"; 
} 
 
         $function_holder ="sayHello"; 
         $function_holder(); 
?> 
 
</body> 
</html> 

This will display following result − 

http://tpcg.io/MRpAH5


Hello 
 
FormProcessing 
PHP Form Processing 

In this article, we will discuss how to process 
form in PHP. HTML forms are used to send the 
user information to the server and returns the 
result back to the browser. For example, if you 
want to get the details of visitors to your 
website, and send them good thoughts, you 
can collect the user information by means of 
form processing. Then, the information can be 
validated either at the client-side or on the 
server-side. The final result is sent to the client 
through the respective web browser. To create 
a HTML form, form tag should be used. 
 
Attributes of Form Tag: 
 

ATTRIBUTE DESCRIPTION 

name or id 

It specifies the name of the 
form and is used to 
identify individual forms. 



action 

It specifies the location to 
which the form data has to 
be sent when the form is 
submitted. 

method 

It specifies the HTTP 
method that is to be used 
when the form is 
submitted. The possible 
values are get and post. 
If get method is used, the 
form data are visible to the 
users in the url. Default 
HTTP method is get. 

encType 

It specifies the encryption 
type for the form data 
when the form is 
submitted. 

novalidate 

It implies the server not to 
verify the form data when 
the form is submitted. 

Controls used in forms: Form processing 
contains a set of controls through which the 



client and server can communicate and share 
information. The controls used in forms are: 

 Textbox: Textbox allows the user to provide 
single-line input, which can be used for 
getting values such as names, search menu 
and etc. 

 Textarea: Textarea allows the user to 
provide multi-line input, which can be used 
for getting values such as an address, 
message etc. 

 DropDown: Dropdown or combobox allows 
the user to provide select a value from a list 
of values. 

 Radio Buttons: Radio buttons allow the user 
to select only one option from the given set 
of options. 

 CheckBox: Checkbox allows the user to 
select multiple options from the set of given 
options. 

 Buttons: Buttons are the clickable controls 
that can be used to submit the form. 

Creating a simple HTML Form: All the form 
controls given above is designed by using 
the input tag based on the type attribute of the 
tag. In the below script, when the form is 



submitted, no event handling mechanism is 
done. Event handling refers to the process 
done while the form is submitted. These event 
handling mechanisms can be done by using 
javaScript or PHP. However, JavaScript 
provides only client-side validation. Hence, we 
can use PHP for form processing. 
HTML Code: 
<!DOCTYPE html> 

<html> 

  <head> 

    <title>Simple Form Processing</title> 

</head> 

  <body> 

    <formid="form1"method="post"> 

        FirstName:  

        <inputtype="text"name="firstname"require
d/> 

        <br> 

        <br>   



        LastName  

        <inputtype="text"name="lastname"require
d/> 

        <br> 

        <br>   

        Address  

        <inputtype="text"name="address"required/
> 

        <br> 

        <br>   

        Email Address:  

        <inputtype="email"name="emailaddress"re
quired/> 

        <br> 

        <br>   

        Password:  

        <inputtype="password"name="password"r
equired/> 

        <br> 



        <br> 

        <inputtype="submit"value="Submit”/> 

    </form> 

</body> 

</html> 

Form Validation: Form validation is done to 
ensure that the user has provided the relevant 
information. Basic validation can be done using 
HTML elements. For example, in the above 
script, the email address text box is having a 
type value as “email”, which prevents the user 
from entering the incorrect value for an email. 
Every form field in the above script is followed 
by a required attribute, which will intimate the 
user not to leave any field empty before 
submitting the form. PHP methods and arrays 
used in form processing are: 

 isset(): This function is used to determine 
whether the variable or a form control is 
having a value or not. 

 $_GET[]: It is used the retrieve the 
information from the form control through the 



parameters sent in the URL. It takes the 
attribute given in the url as the parameter. 

 $_POST[]: It is used the retrieve the 
information from the form control through the 
HTTP POST method. IT takes name attribute 
of corresponding form control as the 
parameter. 

 $_REQUEST[]: It is used to retrieve an 
information while using a database. 

 
Form Processing using PHP: Above HTML 
script is rewritten using the above mentioned 
functions and array. The rewritten script 
validates all the form fields and if there are no 
errors, it displays the received information in a 
tabular form. 

 

<?php  

if(isset($_POST['submit']))  

{  

    if((!isset($_POST['firstname'])) || 

(!isset($_POST['lastname'])) ||   



        (!isset($_POST['address'])) || 

(!isset($_POST['emailaddress'])) ||   

        (!isset($_POST['password'])) || 

(!isset($_POST['gender'])))  

    {  

        $error= "*". "Please fill all the required 

fields";  

    }  

    else 

    {  

        $firstname= $_POST['firstname'];  

        $lastname= $_POST['lastname'];  

        $address= $_POST['address'];  

        $emailaddress= 

$_POST['emailaddress'];  

        $password= $_POST['password'];  

        $gender= $_POST['gender'];  



    }  

}  

?> 

<html> 

   

<head> 

    <title>Simple Form Processing</title> 

</head> 

   

<body> 

    <h1>Form Processing using PHP</h1> 

    <fieldset> 

        <form 

id="form1"method="post"action="form.php"> 

            <?php  

                if(isset($_POST['submit']))  



                {  

                    if(isset($error))  

                    {  

                        echo"<p style='color:red;'>"  

                        . $error. "</p>";  

                    }  

                }  

                ?> 

   

                FirstName:  

                <input 

type="text"name="firstname"/>   

                 <span style="color:red;">*</span> 

                <br> 

                <br> 

                Last Name:  

                <input 



type="text"name="lastname"/> 

                  <span style="color:red;">*</span> 

                <br> 

                <br>   

                Address:  

                <input type="text"name="address"/> 

                  <span style="color:red;">*</span> 

                <br> 

                <br>   

                Email:  

                <input 

type="email"name="emailaddress"/> 

                  <span style="color:red;">*</span> 

                <br> 

                <br>   

                Password:  

                <input 



type="password"name="password"/> 

                   <span style="color:red;">*</span> 

                <br> 

                <br>   

                Gender:  

                <input type="radio"  

                       value="Male"  

                       name="gender"> Male  

                <input type="radio"  

                       value="Female" 

                       name="gender">Female  

                <br> 

                <br> 

                <input 

type="submit"value="Submit"name="submit"/> 

        </form> 



    </fieldset> 

    <?php  

       if(isset($_POST['submit']))  

       {  

          if(!isset($error))  

           {  

                   echo"<h1>INPUT 

RECEIVED</h1><br>";  

                   echo"<table border='1'>";  

                   echo"<thead>";  

                   echo"<th>Parameter</th>";  

                   echo"<th>Value</th>";  

                   echo"</thead>";  

                   echo"<tr>";  

                   echo"<td>First Name</td>";  

                   echo"<td>".$firstname."</td>";  



                   echo"</tr>";  

                   echo"<tr>";  

                   echo"<td>Last Name</td>";  

                   echo"<td>".$lastname."</td>";  

                   echo"</tr>";  

                   echo"<tr>";  

                   echo"<td>Address</td>";  

                   echo"<td>".$address."</td>";  

                   echo"</tr>";  

                   echo"<tr>";  

                   echo"<td>Email Address</td>";  

                   echo"<td>".$emailaddress."</td>";  

                   echo"</tr>";  

                   echo"<tr>";  

                   echo"<td>Password</td>";  

                   echo"<td>".$password."</td>";  



                   echo"</tr>";  

                   echo"<tr>";  

                   echo"<td>Gender</td>";  

                   echo"<td>".$gender."</td>";  

                   echo"</tr>";  

                   echo"</table>";  

        }  

      }  

    ?> 

</body> 

   

</html> 

 Output: 

 
Note: When the PHP and HTML are coded in a 
single file, the file should be saved as PHP. In 
the form, the value for the action parameter 
should be a file name. 
 



PHP Cookies 

 

What is a Cookie? 

A cookie is often used to identify a user. A 
cookie is a small file that the server embeds 
on the user's computer. Each time the same 
computer requests a page with a browser, it will 
send the cookie too. With PHP, you can both 
create and retrieve cookie values. 

 

 

 

Create Cookies With PHP 

A cookie is created with 
the setcookie() function. 

Syntax 

setcookie(name, value, expire, path, domain, 

secure, httponly); 



Only the name parameter is required. All other 
parameters are optional. 

 

PHP Create/Retrieve a Cookie 

The following example creates a cookie named 
"user" with the value "John Doe". The cookie 
will expire after 30 days (86400 * 30). The "/" 
means that the cookie is available in entire 
website (otherwise, select the directory you 
prefer). 

We then retrieve the value of the cookie "user" 
(using the global variable $_COOKIE). We also 
use the isset() function to find out if the cookie 
is set: 

Example 

<?php 

$cookie_name = "user"; 

$cookie_value = "John Doe"; 

setcookie($cookie_name, $cookie_value, time() 

+ (86400 * 30), "/"); // 86400 = 1 day 

?> 



<html> 

<body> 

 

<?php 

if(!isset($_COOKIE[$cookie_name])) { 

  echo "Cookie named '" . $cookie_name . "' is 

not set!"; 

} else { 

  echo "Cookie '" . $cookie_name . "' is 

set!<br>"; 

  echo "Value is: " . $_COOKIE[$cookie_name]; 

} 

?> 

 

</body> 

</html> 

Run example » 

Note: The setcookie() function must appear 
BEFORE the <html> tag. 

 

Modify a Cookie Value 

https://tryphp.w3schools.com/showphp.php?filename=demo_cookie1


To modify a cookie, just set (again) the cookie 
using the setcookie() function: 

Example 

<?php 

$cookie_name = "user"; 

$cookie_value = "Alex Porter"; 

setcookie($cookie_name, $cookie_value, time() 

+ (86400 * 30), "/"); 

?> 

<html> 

<body> 

 

<?php 

if(!isset($_COOKIE[$cookie_name])) { 

  echo "Cookie named '" . $cookie_name . "' is 

not set!"; 

} else { 

  echo "Cookie '" . $cookie_name . "' is 

set!<br>"; 

  echo "Value is: " . $_COOKIE[$cookie_name]; 

} 



?> 

 

</body> 

</html> 

 

Delete a Cookie 

To delete a cookie, use the setcookie() function 
with an expiration date in the past: 

Example 

<?php 

// set the expiration date to one hour ago 

setcookie("user", "", time() - 3600); 

?> 

<html> 

<body> 

 

<?php 

echo "Cookie 'user' is deleted."; 

?> 

 



</body> 

</html> 

 

Check if Cookies are Enabled 

The following example creates a small script 
that checks whether cookies are enabled. First, 
try to create a test cookie with 
the setcookie() function, then count the 
$_COOKIE array variable: 



Example 

<?php 

setcookie("test_cookie", "test", time() 

+ 3600, '/'); 

?> 

<html> 

<body> 

 

<?php 

if(count($_COOKIE) > 0) { 

  echo "Cookies are enabled."; 

} else { 

  echo "Cookies are disabled."; 

} 

?> 

 

</body> 

</html> 

 

 



PHP Sessions 

A session is a way to store information  

(in variables) to be used across multiple pages. 

Unlike a cookie, the information is not stored on 
the users computer. 

 

What is a PHP Session? 

When you work with an application, you open it, 
do some changes, and then you close it. This is 
much like a Session. The computer knows who 
you are. It knows when you start the application 
and when you end. But on the internet there is 
one problem: the web server does not know 
who you are or what you do, because the HTTP 
address doesn't maintain state. 

Session variables solve this problem by storing 
user information to be used across multiple 
pages (e.g. username, favorite color, etc). By 
default, session variables last until the user 
closes the browser. 



So; Session variables hold information about 
one single user, and are available to all pages 
in one application. 

 

Start a PHP Session 

A session is started with 
the session_start() function. 

Session variables are set with the PHP global 
variable: $_SESSION. 

Now, let's create a new page called 
"demo_session1.php". In this page, we start a 
new PHP session and set some session 
variables: 

Example 

<?php 

// Start the session 

session_start(); 

?> 

<!DOCTYPE html> 

<html> 



<body> 

 

<?php 

// Set session variables 

$_SESSION["favcolor"] = "green"; 

$_SESSION["favanimal"] = "cat"; 

echo "Session variables are set."; 

?> 

 

</body> 

</html> 

 

Note: The session_start() function must be the 
very first thing in your document. Before any 
HTML tags. 

 

Get PHP Session Variable Values 

Next, we create another page called 
"demo_session2.php". From this page, we will 



access the session information we set on the 
first page ("demo_session1.php"). 

Notice that session variables are not passed 
individually to each new page, instead they are 
retrieved from the session we open at the 
beginning of each page (session_start()). 

Also notice that all session variable values are 
stored in the global $_SESSION variable: 

 

 

Example 

<?php 

session_start(); 

?> 

<!DOCTYPE html> 

<html> 

<body> 

 

<?php 

// Echo session variables that were set on 



previous page 

echo "Favorite color is 

" . $_SESSION["favcolor"] . ".<br>"; 

echo "Favorite animal is 

" . $_SESSION["favanimal"] . "."; 

?> 

 

</body> 

</html> 

 

Another way to show all the session 
variable values for a user session is to run the 
following code: 

Example 

<?php 

session_start(); 

?> 

<!DOCTYPE html> 

<html> 

<body> 



 

<?php 

print_r($_SESSION); 

?> 

 

</body> 

</html> 

 

How does it work? How does it know it's 
me? 
 
Most sessions set a user-key on the user's 
computer that looks something like this: 
765487cf34ert8dede5a562e4f3a7e12. Then, 
when a session is opened on another page, it 
scans the computer for a user-key. If there is a 
match, it accesses that session, if not, it starts a 
new session. 

 

Modify a PHP Session Variable 

To change a session variable, just overwrite it: 



Example 

<?php 

session_start(); 

?> 

<!DOCTYPE html> 

<html> 

<body> 

 

<?php 

// to change a session variable, just overwrite it 

$_SESSION["favcolor"] = "yellow"; 

print_r($_SESSION); 

?> 

 

</body> 

</html> 

Run example » 

 

Destroy a PHP Session 

https://tryphp.w3schools.com/showphp.php?filename=demo_session4


To remove all global session variables and 
destroy the session, 
use session_unset() and session_destroy(): 

Example 

<?php 

session_start(); 

?> 

<!DOCTYPE html> 

<html> 

<body> 

 

<?php 

// remove all session variables 

session_unset(); 

 

// destroy the session 

session_destroy(); 

?> 

 

</body> 

</html> 



Run example » 

PHP MySQL Database 

 

With PHP, you can connect to and manipulate 
databases. 

MySQL is the most popular database system 
used with PHP. 

 

What is MySQL? 

 MySQL is a database system used on the 
web 

 MySQL is a database system that runs on a 
server 

 MySQL is ideal for both small and large 
applications 

 MySQL is very fast, reliable, and easy to 
use 

 MySQL uses standard SQL 
 MySQL compiles on a number of platforms 
 MySQL is free to download and use 

https://tryphp.w3schools.com/showphp.php?filename=demo_session5


 MySQL is developed, distributed, and 
supported by Oracle Corporation 

 MySQL is named after co-founder Monty 
Widenius's daughter: My 

The data in a MySQL database are stored in 
tables. A table is a collection of related data, 
and it consists of columns and rows. 

Databases are useful for storing information 
categorically. A company may have a database 
with the following tables: 

 Employees 
 Products 
 Customers 
 Orders 

 

PHP + MySQL Database System 

 PHP combined with MySQL are cross-
platform (you can develop in Windows and 
serve on a Unix platform) 

 



Database Queries 

A query is a question or a request. 

We can query a database for specific 
information and have a recordset returned. 

Look at the following query (using standard 
SQL): 

SELECT LastName FROM Employees 

The query above selects all the data in the 
"LastName" column from the "Employees" 
table. 

To learn more about SQL, please visit our SQL 
tutorial. 

 

Download MySQL Database 

If you don't have a PHP server with a MySQL 
Database, you can download it for free 
here: http://www.mysql.com 

 

https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
http://www.mysql.com/


Facts About MySQL Database 

MySQL is the de-facto standard database 
system for web sites with HUGE volumes of 
both data and end-users (like Facebook, 
Twitter, and Wikipedia). 

Another great thing about MySQL is that it can 
be scaled down to support embedded database 
applications. 

Look at http://www.mysql.com/customers/ for 
an overview of companies using MySQL. 

 

❮ PreviousNext ❮ 

Mysql connect

 

<?php 
$servername = "localhost"; 
$username = "username"; 
$password = "password"; 
 
// Create connection 

http://www.mysql.com/customers/
https://www.w3schools.com/php/php_iterables.asp
https://www.w3schools.com/php/php_iterables.asp


$conn = new mysqli($servername, $username, 
$password); 
 
// Check connection 
if ($conn->connect_error) { 
  die("Connection failed: " . $conn-
>connect_error); 
} 
echo "Connected successfully"; 
?> 

MYSQL CREATE TABLE 

<?php 
$servername = "localhost"; 
$username = "username"; 
$password = "password"; 
$dbname = "myDB"; 
 
// Create connection 
$conn = new mysqli($servername, $username, 
$password, $dbname); 
// Check connection 
if ($conn->connect_error) { 
  die("Connection failed: " . $conn-
>connect_error); 



} 
 
// sql to create table 
$sql = "CREATE TABLE MyGuests ( 
id INT(6) UNSIGNED AUTO_INCREMENT 
PRIMARY KEY, 
firstname VARCHAR(30) NOT NULL, 
lastname VARCHAR(30) NOT NULL, 
email VARCHAR(50), 
reg_date TIMESTAMP DEFAULT 
CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP 
)"; 
 
if ($conn->query($sql) === TRUE) { 
  echo "Table MyGuests created successfully"; 
} else { 
  echo "Error creating table: " . $conn->error; 
} 
 
$conn->close(); 
?> 

 

 



FILE HANDLING CONCEPTS 

File handling is an important part of any web application. 

You often need to open and process a file for different 

tasks. 

PHP Manipulating Files 

PHP has several functions for creating, reading, 

uploading, and editing files. 

 

PHP Open File - fopen() 

A better method to open files is with 
the fopen() function. This function gives you 

more options than the readfile() function. 

We will use the text file, "webdictionary.txt", 
during the lessons: 

The first parameter of fopen() contains the 

name of the file to be opened and the 
second parameter specifies in which mode 
the file should be opened. The following 
example also generates a message if the 



fopen() function is unable to open the 
specified file: 

Example 

<?php 

$myfile = 

fopen("webdictionary.txt", "r") or die("U

nable to open file!"); 

echo fread($myfile,filesize("webdictionar

y.txt")); 

fclose($myfile); 

?> 

Run example » 

Tip: The fread() and the fclose() functions will be 

explained below. 

The file may be opened in one of the following modes: 

Modes Description 

R Open a file for read only. File pointer starts 

at the beginning of the file 

https://tryphp.w3schools.com/showphp.php?filename=demo_file_fopen


W Open a file for write only. Erases the 

contents of the file or creates a new file if it 

doesn't exist. File pointer starts at the 

beginning of the file 

A Open a file for write only. The existing data 

in file is preserved. File pointer starts at the 

end of the file. Creates a new file if the file 

doesn't exist 

X Creates a new file for write only. Returns 

FALSE and an error if file already exists 

r+ Open a file for read/write. File pointer starts 

at the beginning of the file 

w+ Open a file for read/write. Erases the 

contents of the file or creates a new file if it 

doesn't exist. File pointer starts at the 

beginning of the file 

a+ Open a file for read/write. The existing data 

in file is preserved. File pointer starts at the 

end of the file. Creates a new file if the file 



doesn't exist 

x+ Creates a new file for read/write. Returns 

FALSE and an error if file already exists 

 

 

PHP Read File - fread() 

The fread() function reads from an open file. 

The first parameter of fread() contains the 

name of the file to read from and the second 

parameter specifies the maximum number of 
bytes to read. 

The following PHP code reads the 

"webdictionary.txt" file to the end: 

fread($myfile,filesize("webdictionary.txt")

); 

 

PHP Close File - fclose() 



The fclose() function is used to close an open 

file. 

It's a good programming practice to close all 
files after you have finished with them. You 

don't want an open file running around on 

your server taking up resources! 

The fclose() requires the name of the file (or 

a variable that holds the filename) we want to 
close: 

<?php 

$myfile = fopen("webdictionary.txt", "r"); 

// some code to be executed.... 

fclose($myfile); 

?> 

 

PHP Read Single Line - fgets() 

The fgets() function is used to read a single 

line from a file. 

The example below outputs the first line of the 

"webdictionary.txt" file: 



Example 

<?php 

$myfile = 

fopen("webdictionary.txt", "r") or die("Una

ble to open file!"); 

echo fgets($myfile); 

fclose($myfile); 

?> 

Run example » 

Note: After a call to the fgets() function, the 

file pointer has moved to the next line. 

 

PHP Check End-Of-File - feof() 

The feof() function checks if the "end-of-file" 

(EOF) has been reached. 

The feof() function is useful for looping 

through data of unknown length. 

The example below reads the 

"webdictionary.txt" file line by line, until end-

of-file is reached: 

https://tryphp.w3schools.com/showphp.php?filename=demo_file_fgets


Example 

<?php 

$myfile = 

fopen("webdictionary.txt", "r") or die("Una

ble to open file!"); 

// Output one line until end-of-file 

while(!feof($myfile)) { 

  echo fgets($myfile) . "<br>"; 

} 

fclose($myfile); 

?> 

Run example » 

 

PHP Read Single Character - 

fgetc() 

The fgetc() function is used to read a single 

character from a file. 

The example below reads the 
"webdictionary.txt" file character by character, 

until end-of-file is reached: 

https://tryphp.w3schools.com/showphp.php?filename=demo_file_feof


Example 

<?php 

$myfile = 

fopen("webdictionary.txt", "r") or die("Una

ble to open file!"); 

// Output one character until end-of-file 

while(!feof($myfile)) { 

  echo fgetc($myfile); 

} 

fclose($myfile); 

?> 

Run example » 

Note: After a call to the fgetc() function, the 

file pointer moves to the next character. 

 

st Yourself With Exercises 

Exercise: 

Open a file, and write the correct syntax to 
output one character at the time, until end-of-

file. 

https://tryphp.w3schools.com/showphp.php?filename=demo_file_fgetc


$myfile = fopen("webdict.txt", "r"); 

while(! ($myfile)) { 

  echo ($myfile); 

} 

 

 



 
 

                                                   Unit – 4 

Perl back grounder-perl overview-perl  parsing  rules -

variables &data-statements &control structures-subroutines-

packages &modules – working with files – data manipulation 

PERL INTRODUCTION 

Perl is a general-purpose programming language originally developed 

for text manipulation and now used for a wide range of tasks including 

system administration, web development, network programming, GUI 

development, and more. 

What is Perl? 

• Perl is a stable, cross platform programming language. 

• Though Perl is not officially an acronym but few people used it 

as Practical Extraction and Report Language. 

• It is used for mission critical projects in the public and private 

sectors. 

• Perl is an Open Source software, licensed under its Artistic License, 

or the GNU General Public License (GPL). 

• Perl was created by Larry Wall. 

• Perl 1.0 was released to usenet's alt.comp.sources in 1987. 

• At the time of writing this tutorial, the latest version of perl was 

5.16.2. 

 

Perl features: 

1. Mission critical 

Used for mission critical projects in the public and private 

sectors. 

2. Object-oriented, procedural and functional 



 
 

Supports object-oriented, procedural and functional 

programming. 

 

3. Easily extendible 

There are over 25,000 open source modules available from the 

Comprehensive Perl Archive Network (CPAN). 

4. Text manipulation 

Perl includes powerful tools for processing text that make it ideal 

for working with HTML, XML, and all other mark-up and natural 

languages. 

5. Unicode support 

Supports Unicode version 6 (from Perl 5.14). 

6. Database integration 

Perl's database integration interface (DBI) supports third-party 

databases including Oracle, 

Sybase, Postgres, MySQL and many others. 

7. C/C++ library interface 

Perl interfaces with external C/C++ libraries through XS or SWIG. 

8. Embeddable 

The Perl interpreter can be embedded into other systems such 

as web servers and database servers. 

9. Open Source 

Perl is Open Source software, licensed under its Artistic License, 

or the GNU General Public License (GPL). 

 

 

http://cpan.perl.org/
http://www.unicode.org/
http://dbi.perl.org/
http://www.postgresql.org/
http://www.mysql.com/
https://metacpan.org/search?q=DBD%3A%3A
http://www.swig.org/
http://perl.apache.org/
http://www.postgresql.org/docs/8.4/interactive/plperl.html
http://www.opensource.org/
http://dev.perl.org/licenses/
http://dev.perl.org/licenses/artistic.html
http://dev.perl.org/licenses/gpl1.html


 
 

 

Perl and the Web: 

• Ideal web programming language 

• Web Frameworks 

• Database integration 

• Web modules 

• Duct-tape of the internet, and more... 

• Encryption capable 

• Embed into Apache 

 

Advantages of Perl: 

 

• Perl Provides supports for cross platform and it is compatible with 

mark-up languages like HTML, XML etc. 

• It is very efficient in text-manipulation i.e. Regular Expression. It 

also provides the socket capability. 

• It is free and a Open Source software which is licensed 

under Artistic and GNU General Public License (GPL). 

• It is an embeddable language that’s why it can embed in web 

servers and database servers. 

• It supports more than 25, 000 open source modules 

on CPAN(Comprehensive Perl Archive Network) which provide 

many powerful extensions to the standard library. For example, 

XML processing, GUI(Graphical User Interface) and DI(Database 

Integration) etc. 

 

Disadvantages of Perl: 

 

• Perl doesn’t supports portability due to CPAN modules. 

• Programs runs slowly and program needs to be interpreted each 

time when any changes are made. 

• In Perl, the same result can be achieved in several different ways 

which make the code untidy as well as unreadable. 

• Usability factor is lower when compared to other languages. 

https://en.wikipedia.org/wiki/Artistic_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/CPAN
https://en.wikipedia.org/wiki/CPAN


 
 

 

 

Applications: 

 

• One of the major application of Perl language is to processing of 

text files and analysis of the strings. 

• Perl also used for CGI( Common Gateway Interface) scripts. 

• Used in web development, GUI(Graphical User Interface) 

development. 

• Perl’s text-handling capabilities is also used for generating SQL 

queries. 

 

Programming in Perl: 

• Since the Perl is a lot similar to other widely used languages 

syntactically, it is easier to code and learn in Perl.  

• Programs can be written in Perl in any of the widely used text 

editors like Notepad++, gedit etc.  

• After writing the program save the file with the 

extension .pl or .PL 

•  To run the program use perl file_name.pl on the command line. 

 

Example:  

 

A simple program to print Welcome to GFG! 

 

# Perl program to print Welcome to GFG!  

#!/usr/bin/perl  

# Below line will print "Welcome to GFG!"  

print "Welcome to GFG!\n";  

Output: 

Welcome to GFG! 

 

 

 

https://en.wikipedia.org/wiki/Common_Gateway_Interface


 
 

 

Comments:  

Comments are used for enhancing the readability of the code. The 

interpreter will ignore the comment entries and does not execute 

them. There are two types of comment in Perl: 

Single line comments:  

• Perl single line comment starts with hashtag symbol with no 

white spaces (#) and lasts till the end of the line.  

• If the comment exceeds one line then put a hashtag on the next 

line and continue the comment.  

• Perl’s single line comments are proved useful for supplying short 

explanations for variables, function declarations, and 

expressions. 

 

Syntax: 

# Single line comment 

Example: 

#!/usr/bin/perl  

$b = 10;    # Assigning value to $b  

$c = 30;    # Assigning value to $c    

$a = $b + $c;   # Performing the operation  

print "$a";     # Printing the result  

 

Multi-line string as a comment: 

• Perl multi-line comment is a piece of text enclosed within “=” 

and “=cut”.  

• They are useful when the comment text does not fit into one 

line; therefore needs to span across lines.  

• Multi-line comments or paragraphs serve as documentation for 

others reading your code. 

•  Perl considers anything written after the ‘=’ sign as a comment 

until it is accompanied by a ‘=cut’ at the end.  

• Please note that there should be no whitespace after the ‘=’ 

sign. 



 
 

Syntax: 

 

= Multi line comments 

Line start from  = is interpreted as the 

starting of multiline comment and =cut is  

consider as the end of multiline comment 

=cut 

 

Example: 

#!/usr/bin/perl  

  =Assigning values to   

variable $b and $c  

=cut  

$b = 10;      

$c = 30;  

  =Performing the operation  

and printing the result  

=cut  

$a = $b + $c;     

print "$a";      

 

 

 

 

 

PERL OVERVIEW 

❖ According to Wall, Perl has two slogans.  

❖ The first is "There's more than one way to do it," commonly known as TMTOWTD. 

❖ The second slogan is "Easy things should be easy and hard things should be possible". 

https://en.wikipedia.org/wiki/There%27s_more_than_one_way_to_do_it


 
 

OVERVIEW  

❖ Features 

❖ Design 

❖ Appilication 

❖ Implementation 

❖ Availability   

❖ Database interfaces  

❖ Comparative performance 

❖ Optimizing 

 

FEATURES          

❖ The overall structure of Perl derives broadly from C. 

❖ Perl is procedural in nature, with variables ,expressions,assignment statements, brace-

delimited blocks, control    structures,                              

subroutines. 

❖ Perl also takes features from shell programming.  

❖ All variables are marked with leading sigils, which allow variables 

            to be interpolated directly into strings.  

❖ Perls database integration interface DBI supports third-party     

             databases including Oracle, Sybase, Postgres, MySQL and others. 

❖ Perl works with HTML, XML, and other mark-up languages. 

❖ Perl supports Unicode. 

❖ Perl supports both procedural and object-oriented programming. 

❖ Perl interfaces with external C/C++ libraries through XS or SWIG. 

❖ Perl is extensible. There are over 20,000 third party modules available from the 

Comprehensive Perl Archive Network (CPAN). 

❖ The Perl interpreter can be embedded into other systems.. 

Design 
       

❖ The design of Perl can be understood as a response to 

            three broad trends in the   

            computer industry: falling hardware costs, rising labor 

            costs, and improvements in compiler technology.   

❖ Many earlier computer languages, such as Fortran and C,aimed to make efficient use 

of expensive computer  hardware.  

❖ In contrast, Perl was designed so that computer programmers could write programs 

more quickly and easily.   

https://en.wikipedia.org/wiki/Assignment_statement
https://en.wikipedia.org/wiki/Bracket
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/Control_structure
https://en.wikipedia.org/wiki/Sigil_(computer_programming)
https://en.wikipedia.org/wiki/Variable_interpolation
https://en.wikipedia.org/wiki/String_(computer_science)
https://cpan.perl.org/
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Fortran


 
 

❖  Perl does not enforce any particular  programming paradigm (procedural, object-

oriented, functional, or others) or even require the programmer to choose among 

them.      

❖  No written specification or standard for the Perl language exists for Perl versions 

through Perl 5, and there are no plans to create one for the current version of Perl.  

❖  There has been only one implementation of the interpreter, and the language has 

evolved along with it.  

 

 

❖ Perl has many features that ease the task of the programmer at the expense of 

greater CPU and memory requirements.  

❖ These include automatic memory management; dynamic typing; strings, lists, and 

hashes; regular expressions; introspection; and an eval()  function. 

Application 
❖ Perl has many and variety applications, compounded by the availability of many 

standard and third-party modules. 

❖ Perl has chiefly been used to write CGI scripts: large projects written in Perl 

include cPanel, Slash, Bugzilla, RT, TWiki,  

❖ It is also an optional component of the popular LAMP technology stack for Web 

development, in lieu of PHP or Python.  

❖  Perl is used extensively as a system programming language in the Debian GNU/Linux 

distribution.[81] 

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Type_introspection
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/CPanel
https://en.wikipedia.org/wiki/Slash_(weblog_system)
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Request_Tracker
https://en.wikipedia.org/wiki/TWiki
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Perl#cite_note-81
https://www.guru99.com/images/2013/07/071713_1135_Introductio4.png


 
 

❖ The combination makes Perl a popular all-purpose language for system administrators, 

particularly because short programs, often called "one-liner programs," can be entered 

and run on a single command line. 

❖ Perl code can be made portable across Windows and Unix; such code is often used by 

suppliers of software  to simplify packaging and maintenance of software build- and 

deployment-scripts 

Perl is available on a wide variety of platforms −. 

❖ Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX etc 

❖ Win 9x/NT/2000/ 

❖ WinCE 

❖ Macintosh (PPC, 68K) 

❖ Solaris (x86, SPARC) 

❖ OpenVMS 

❖ Alpha (7.2 and later) 

 

❖ Graphical user interfaces (GUIs) may be developed using Perl.  

 

❖ For    example, Perl/Tk and wxPerl are commonly used to enable user interaction with 

Perl scripts. Such interaction may be synchronous or asynchronous, using callbacks to 

update the GUI. 

 

Implementation 

❖ Perl is implemented as a core interpreter, written in C,together with a large collection 

of  modules, written in Perl and C.  

❖ The interpreter has an object-oriented architecture. All of the elements  

            of the Perl language scalars, arrays, hashes, coderefs, file handlesare  representent in     

           the interpreter by C structs. 

❖ The life of a Perl interpreter divides broadly into a compile phase and a run phase.[83]  

❖ In Perl, the phases are the major stages in the interpreter's life-cycle. Each interpreter 

goes through each phase only once, and the phases follow in a fixed sequence.    

❖ Perl is distributed with over 250,000 functional tests for core Perl 

language.                                                    

 

Availability 
❖ Perl is dual licensed under both the Artistic  License 1.0 and 

the GNU General Public   License.[6] Distributions are available for 

most operating systems. It is particularly prevalent 

on Unix and Unix-like systems, but it has been ported to most 

modern (and many obsolete) platforms. 

https://en.wikipedia.org/wiki/System_administrator
https://en.wikipedia.org/wiki/One-liner_program
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Tk_(framework)
https://en.wikipedia.org/wiki/WxPerl
https://en.wikipedia.org/wiki/Callback_(computer_programming)
https://en.wikipedia.org/wiki/File_handle
https://en.wikipedia.org/wiki/Struct_(C_programming_language)
https://en.wikipedia.org/wiki/Perl#cite_note-83
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Dual_licensed
https://en.wikipedia.org/wiki/Artistic_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Perl#cite_note-licensing-6
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like


 
 

❖ Because of unusual changes required for the classic Mac 

OS environment, a special port called MacPerl was shipped 

independently.[89 
❖ The Comprehensive Perl Archive Network carries a complete 

list of supported platforms with links to the distributions 

available on each. 

Optimizing 
❖ Because Perl is an interpreted language, it can give 

problems when   efficiency is critical; in such situations, the 
most critical routines can be written in other languages (such 
as C), which can be connected to Perl via simple In line 
modules or the more complex but flexible XS mechanism. 

 

Database interfaces     

❖ Perl's text-handling capabilities can be used for 

generating SQL queries; arrays, hashes, and automatic 

memory management make it easy to collect and process the 

returned data In Perl 5, database interfaces are implemented 

by Perl DBI modules.   

❖ The DBI (Database Interface) module presents a single, 

database independent interface to Perl applications, while the 

DBD (Database  Driver) modules handle the details of 

accessing some 50 different databases; there are DBD drivers 

for most ANSI SQL databases. 

Comparative performance 

❖   The Computer Language Benchmarks  compares the 

                 performance of implementations of typical programming  

                 problems in several programming languages. 

❖ Large Perl programs start more slowly than similar programs in  

               compiled languages because perl has to compile the source  

               every time it runs.  

❖ In a talk at the YAPC::Europe 2005 conference and 

subsequent article "A Timely Start," Jean-Louis Leroy found 

https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Classic_Mac_OS
https://en.wikipedia.org/wiki/Perl#cite_note-macperl-89
https://en.wikipedia.org/wiki/CPAN
https://en.wikipedia.org/wiki/Interpreted_language#Disadvantages
https://en.wikipedia.org/wiki/Interpreted_language#Disadvantages
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/XS_(Perl)
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Yet_Another_Perl_Conference


 
 

that his Perl programs took much longer to run than expected 

because the perl interpreter  spent significant time finding 

modules within his over-large include path. 

❖ Once Perl code is compiled, there is additional 

overhead during the execution phase that typically is 

not present for programs written in compiled languages 
such as C or C++.[1 

PERL DATATYPES AND VARIABLES 

Perl  Data Types: 

● Data types specify the type of data that a valid Perl variable can hold. Perl 

is a loosely typed language. 
● There is no need to specify a type for the data while using in the Perl 

program.  
● The Perl interpreter will choose the type based on the context of the data 

itself. 
There are 3 data types in Perl as follows: 

1. Scalars 

2. Arrays 

3. Hashes(Associative Arrays) 

 

1. Scalars:  

● It is a single unit of data which can be an integer number, floating point, a 

character, a string, a paragraph, or an entire web page. 
●  They are preceded by a dollar sign ($). 

 

Example: 

# Perl Program to demonstrate the   

# Scalars data types  

# An integer assignment  

$age = 1;               

# A string   

$name = "ABC";  

# A floating point     

$salary = 21.5;       

# displaying result  

print "Age = $age\n";  

print "Name = $name\n";  

print "Salary = $salary\n";  

Output: 

https://en.wikipedia.org/wiki/Perl#cite_note-101
https://www.geeksforgeeks.org/introduction-to-perl/
https://www.geeksforgeeks.org/introduction-to-perl/


 
 

Age = 1 

Name = ABC 

Salary = 21.5 

● Scalar Operations:  

− There are many operations which can be performed on the scalar 

data types like addition, subtraction, multiplication etc. 
 

Example: 

# Perl Program to demonstrate   

# the Scalars operations  

#!/usr/bin/perl  

# Concatenates strings  

$str = "GFG" . " is the best";  

# adds two numbers       

$num = 1 + 0;   

# multiplies two numbers               

$mul = 4 * 9;   

# concatenates string and number               

$mix = $str . $num;               

# displaying result  

print "str = $str\n";  

print "num = $num\n";  

print "mul = $mul\n";  

print "mix = $mix\n";  

Output: 

str = GFG is the best 

num = 1 

mul = 36 

mix = GFG is the best1 

 

2. Arrays:  

● An array is a variable that stores the value of the same data type in the 

form of a list. 
●  To declare an array in Perl, we use ‘@’ sign in front of the variable 

name. 
 

 

 

Example: 

@age=(10, 20, 30) 



 
 

It will create an array of integers which contains the value 10, 20 and 30. To 

access a single element of an array, we use the ‘$’ sign. 

$age[0] 

It will produce the output as 10. 

 Example: 

 

# Perl Program to demonstrate   

# the Arrays data type  

#!/usr/bin/perl  

# creation of arrays  

@ages = (33, 31, 27);               

@names = ("Geeks", "for", "Geeks");  

# displaying result  

print "\$ages[0] = $ages[0]\n";  

print "\$ages[1] = $ages[1]\n";  

print "\$ages[2] = $ages[2]\n";  

print "\$names[0] = $names[0]\n";  

print "\$names[1] = $names[1]\n";  

print "\$names[2] = $names[2]\n";  

 

Output: 

$ages[0] = 33 

$ages[1] = 31 

$ages[2] = 27 

$names[0] = Geeks 

$names[1] = for 

$names[2] = Geeks 

 

 

 

3. Hashes(Associative Arrays):  

● It is a set of key-value pair.  
● It is also termed as the Associative Arrays.  
● To declare a hash in Perl, we use the ‘%’ sign. To access the particular 

value, we use the ‘$’ symbol which is followed by the key in braces. 
Example: 

#!/usr/bin/perl 

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40); 



 
 

print "\$data{'John Paul'} = $data{'John Paul'}\n"; 

print "\$data{'Lisa'} = $data{'Lisa'}\n"; 

print "\$data{'Kumar'} = $data{'Kumar'}\n"; 

 

This will produce the following result − 

$data{'John Paul'} = 45 

$data{'Lisa'} = 30 

$data{'Kumar'} = 40 
 

 

Perl  Variables: 

 

● Variables in Perl are used to store and manipulate data throughout the 

program.  
● When a variable is created it occupies memory space.  
● The data type of a variable helps the interpreter to allocate memory and 

decide what to be stored in the reserved memory.  
● Therefore, variables can store integers, decimals, or strings with the 

assignment of different data types to the variables. 

  
Naming of a Variable: 

A variable in Perl can be named anything with the use of a specific 

datatype. There are some rules to follow while naming a variable: 

● Variables in Perl are case sensitive. 

Example: 

$John and $john are two different variables 

● It starts with $, @ or % as per the datatype required, followed by zero or 

more letters, underscores and digits 

● Variables in Perl cannot contain white spaces or any other special character 

except underscore. 

Example: 

$my-name = "John"; // Invalid  

$my name = "John"; // Invalid 

$my_name = "John"; // Valid 

  

Declaration of a Variable 

https://www.geeksforgeeks.org/perl-variables-and-its-types/
https://www.geeksforgeeks.org/introduction-to-perl/


 
 

  

Variable Declaration is done on the basis of the datatype used to define the 

variable. These variables can be of three different datatypes: 

● Scalar Variables: It contains a single string or numeric value. It starts with 

$ symbol. 

Syntax: $var_name = value; 

Example: 

$item = "Hello"  

$item_one = 2 

● Array Variables: It contains a randomly ordered set of values. It starts 

with @ symbol. 

Syntax : @var_name = (val1, val2, val3, …..); 

Example: 

@price_list = (70, 30, 40); 

@name_list = ("Apple", "Banana", "Guava"); 

● Hash Variables: It contains (key, value) pair efficiently accessed per key. 

It starts with % symbol. 

Syntax : @var_name = (val1 = key1, val2 = key2, val3 = key3, …..); 

Example: 

%item_pairs = ("Apple" =>2, "Banana'=>3); 

%pair_random = ("Hi" =>8, "Bye"=>9); 

  

 

Modification of a Variable 

  

Perl allows to modify its variable values anytime after the variable declaration is 

done. There are various ways for the modification of a variable: 

● A scalar variable can be modified simply by redefining its value. 

Example: 

$name = "John"; 

# This can be modified by simply 

# redeclaring the variable $name. 

$name = "Rahul"; 

● An element of an array can be modified by passing the index of that 

element to the array and defining a new value to it. 

Example: 

@array = ("A", "B", "C", "D", "E"); 



 
 

# If value of second variable is to 

# be modified then it can be done by 

@array[2] = "4"; 

# This will change the array to, 

# @array = ("A", "B", "4", "D", "E"); 

● A value in a hash can be modified by using its Key. 

Example: 

%Hash = ("A", 10, "B", 20, "C", 30) 

# This will modify the value  

# assigned to Key 'B' 

$Hash{"B"} = 46; 

%Hash = (“A”, 10, ”B”, 46, ”C”, 30) 

 

 

Variable Interpolation: 

● Perl provides various methods to define a String to a variable.  
● This can be done with the use of single quotes, double quotes, using q-

operator and double-q operator, etc. 
● Using single quotes and double quotes for writing strings is same but 

there exists a slight difference between how they work.  
● Strings which are written with the use of single quotes display the content 

written within it exactly as it is. 

Example: 
$name = "John" 

print 'Hi $name\nHow are you?'  

The above code will print: 

Hi $name\nHow are you? 

Whereas strings written within double quotes replace the variables with their 

value and then displays the string. It even replaces the escape sequences by their 

real use. 

Example: 

$name = "John" 

print "Hi $name\nHow are you?"  

The above code will print: 



 
 

Hi John 

How are you? 

Example Code: 

 

#!/usr/bin/perl   

use Data::Dumper;  

# Scalar Variable  

$name = "GeeksForGeeks";  

# Array Variable  

@array = ("G", "E", "E", "K", "S");  

# Hash Variable  

%Hash = ('Welcome', 10, 'to', 20, 'Geeks', 40);  

   

# Variable Modification  

@array[2] = "F";  

print "Modified Array is @array\n";  

# Interpolation of a Variable  

# Using Single Quote  

print 'Name is $name\n';  

# Using Double Quotes  

print "\nName is $name";  

# Printing hash contents  

print Dumper(\%Hash);  

Output: 

Modified Array is G E F K S 

Name is $name\n 

Name is GeeksForGeeks$VAR1 = { 

          'to' => 20, 

          'Welcome' => 10, 

          'Geeks' => 40 

        } 

 

STATEMENT AND CONTROL STRUCTURES:- 

PERL DEFINTION: 

 

• Perl is a programming language. 



 
 

• It’s interpreted. 

• It’s designed for text processing. 

• It’s general-purpose, high-level-language. 

 

 A program is a collection of statements. After the program 

executes one statement, it "moves" to the next statement and 

executes that one. If you imagine that a statement is a 

stepping stone, then you can also think of the execution flow 

of the program as a sequence of "stones". 

 

Operators: 
 

➢ Although any expression can be used as a condition, is usually 

one that is built from relational operators and/or logical 

operators.  
 

Relational operators: 

• Relational operators are operators that compare two expressions. 

• In math we use operators like >, <, and ≠ to compare numeric 

expressions.  

• There are six numeric relational operators in Perl, which are listed in 

the next slide. 

 

 



 
 

 

 

Logical operators: 

The following are logical operators in Perl: 

➢ $a && $b performs logical AND of two variables or expressions. The 

logical && operator checks if both variables or expressions are true. 

➢ $a || $b performs logical OR of two variables or expressions. The 

logical || operator checks either a variable or expression is true. 

➢ !$a performs logical NOT of the variable or expression. The 

logical ! operator inverts the value of the followed variable or 

expression. In the other words, it converts true to false or false to true. 

 

 

 

 

Types of conditional statements: 



 
 

Sr.No. Statement & Description 

1 if statement 

An if statement consists of a boolean expression followed by one or more 

statements. 

2 if...else statement 

An if statement can be followed by an optional else statement. 

3 if...elsif...else statement 

An if statement can be followed by an optional elsif statement and then by an 

optional else statement. 

4 unless statement 

An unless statement consists of a boolean expression followed by one or more 

statements. 

5 unless...else statement 

An unless statement can be followed by an optional else statement. 

6 unless...elsif..else statement 

An unless statement can be followed by an optional elsif statement and then by 

an optional else statement. 

7 switch statement 

With the latest versions of Perl, you can make use of the switch statement. which 

allows a simple way of comparing a variable value against various conditions. 

 

 

1.The if statement:- 

➢ If the boolean expression evaluates to true then the block of code inside 

the if statement will be executed.  

➢ If boolean expression evaluates to false then the first set of code after the 

end of the if statement (after the closing curly brace) will be executed. 

https://www.tutorialspoint.com/perl/perl_if_statement.htm
https://www.tutorialspoint.com/perl/perl_if_else_statement.htm
https://www.tutorialspoint.com/perl/perl_if_elsif_statement.htm
https://www.tutorialspoint.com/perl/perl_unless_statement.htm
https://www.tutorialspoint.com/perl/perl_unless_else_statement.htm
https://www.tutorialspoint.com/perl/perl_unless_elsif_statement.htm
https://www.tutorialspoint.com/perl/perl_switch_statement.htm


 
 

Flow Diagram: 

 

Syntax: 

If(expression) 

{ statement1; 

Statement2;… 

} 

Example: 

$a = 1; 

if($a == 1) 

{ 

   print("Welcome to the Perl if tutorial!\n");} 

2.If-else statement: 
➢ Perl provides the if else statement that allows you to execute a 

code block if the expression evaluates to true , otherwise, the 

code block inside the else branch will execute. 

Flow chart: 



 
 

 

Syntax: 

if(expression){ 

   //if code block; 

}else{ 

   //else code block; 

} 

Example: 

$a = 1; 

$b = 2; 

if($a == $b){ 

 print("a and b are equal\n"); 

}else{ 

 print("a and b are not equal\n"); 

} 

3.if...elsif...else statement: 
 

An if statement can be followed by an optional elsif...else statement, which is very 

useful to test the various conditions using single if...elsif statement. 

https://www.tutorialspoint.com/perl/perl_if_elsif_statement.htm


 
 

When using if , elsif , else statements there are few points to keep in mind. 

• An if can have zero or one else's and it must come after any elsif's. 

• An if can have zero to many elsif's and they must come before the else. 

• Once an elsif succeeds, none of the remaining elsif's or else's will be tested. 

Flow chart: 

 

Syntax 
if(expression){ 

  ... 

}elsif(expression2){ 

  ... 

}elsif(expression3{ 

  ... 

}else{ 

   ... 

} 

Example: 



 
 

$a = 1; 

$b = 2; 

if($a == $b){ 

   print("a and b are equal\n"); 

}elsif($a > $b){ 

   print("a is greater than b\n"); 

}else{ 

   print("a is less than b\n"); 

} 

4.unless statement: 

➢ Perl executes the statement from right to left, if the condition is 

false , Perl executes the statement that precedes the unless . 

➢  If the condition is true , Perl skips the statement.  

➢ If the condition evaluates to false , Perl executes the code block, 

otherwise, it skips the code block. 

Flow Chart: 

 

Syntax: 

unless(condition){ 

   // code block 

} 

https://www.tutorialspoint.com/perl/perl_unless_statement.htm


 
 

Example: 

$a = 10; 

unless($a <= 0){ 

   print("a is greater than 0\n")                     

} 

5.unless...else statement: 
➢ Similar to unless statement, the unless-else statement in Perl behaves 

opposite to the if-else statement.  

➢ In unless-else, the statements inside unless gets executed if the 

condition is false and statements inside else gets executed if the 

condition is true. 

Flow chart: 

 
 

 

Syntax: 

unless(condition){ 

  // unless code block 

}else{ 

  // else code block 

} 

https://www.tutorialspoint.com/perl/perl_unless_else_statement.htm
https://beginnersbook.com/2017/02/unless-statement-in-perl/
https://beginnersbook.com/2017/02/if-else-statement-in-perl/


 
 

Example: 

$a = 10; 

unless($a >= 0){ 

   print("a is less than 0\n");                    

}else{ 

   print("a is greater than or equal 0\n");                     

} 

 

6.Unless elseif else statement: 

➢ If you have more than one condition to check with 

the unless statement, you can use the unless elsif else statement 

as follows: 

Syntax: 

unless(condition_1){ 

   // unless code block 

}elsif(condition_2){ 

   // elsif code block 

}else{ 

   // else code block 

} 

Example: 

#!/usr/local/bin/perl  

$a = 20; 

# check the boolean condition using if statement 

unless( $a  ==  30 ) { 

   # if condition is false then print the following 

   printf "a has a value which is not 20\n"; 

} elsif( $a ==  30 ) { 



 
 

   # if condition is true then print the following 

   printf "a has a value which is 30\n"; 

} else { 

   # if none of the above conditions is met 

   printf "a has a value which is $a\n"; 

} 

7.Switch statement: 

➢ A switch statement allows a variable to be tested for equality 

against a list of values.  

➢ Each value is called a case, and the variable being switched on is 

checked for each switch case. 

 

Flow Diagram: 

 

Syntax: 

given(expression) 

{ 

when ( first value) 

{ 

statement to be executed; 

} 



 
 

when (second value) 

{ 

statement to be executed; 

} 

.... 

... 

when (nth value) 

{ 

statement to be executed; 

} 

default 

{ 

statement to be executed if all the cases are not matched.; 

} 

} 

Example: 

use feature qw(switch say); 

print "Enter the Number for the Week \n"; 

chomp( my $week = <> ); 

given ($week) 

{ 

when('1') 

{ 

say "Monday"; 

} 

when('2') 

{ 

say "Tuesday"; 

} 

when('3') 

{ 

say "Wednesday"; 

} 

when('4') 

{ 

say "Thursday"; 



 
 

} 

when('5') 

{ 

say "Friday"; 

} 

when('6') 

{ 

say "Saturday"; 

} 

when('7') 

{ 

say "Sunday"; 

} 

default 

{ 

say "Please Enter valid Week Number"; 

} 

} 

Loops  

Looping in programming languages is a feature which facilitates the execution of a set 

of instructions or functions repeatedly while some condition evaluates to true. Loops make 

the programmers task simpler. Perl provides the different types of loop to handle the 

condition based situation in the program. The loops in Perl are : 

• for loop 

• foreach loop 

• while loop 

• do…. while loop 

• until loop 

• Nested loops 

                                 for Loop 

 
“for” loop provides a concise way of writing the loop structure. A for statement consumes 

the initialization, condition and increment/decrement in one line thereby providing a shorter,  
easy to debug structure of looping. 

 

Syntax: 
for (init statement; condition; increment/decrement )  

{ 

https://www.geeksforgeeks.org/perl-loops-for-foreach-while-do-while-until-nested-loops/#forloop
https://www.geeksforgeeks.org/perl-loops-for-foreach-while-do-while-until-nested-loops/#foreachloop
https://www.geeksforgeeks.org/perl-loops-for-foreach-while-do-while-until-nested-loops/#whileloop
https://www.geeksforgeeks.org/perl-loops-for-foreach-while-do-while-until-nested-loops/#dowhileloop
https://www.geeksforgeeks.org/perl-loops-for-foreach-while-do-while-until-nested-loops/#untilloop
https://www.geeksforgeeks.org/perl-loops-for-foreach-while-do-while-until-nested-loops/#Nestedloops


 
 

    # Code to be Executed 

} 

 

Flow Chart: 

 

 
 

 

 

 

Example : 

 

# Perl program to illustrate  
# the for loop  

   
# for loop  
for ($x =10; $x<=15 ; $x++)  

{  
    print "$x\n" 
} 

  
Output: 

10 

11 

12 

13 

14 

15 

foreach Loop 
A foreach loop is used to iterate over a list and the variable holds the value of the 

elements of the list one at a time. It is majorly used when we have a set of data in a list and 

we want to iterate over the elements of the list instead of iterating over its range. The process 

of iteration of each element is done automatically by the loop. 



 
 

Syntax: 
foreach variable  

{ 

    # Code to be Executed 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow Chart: 

 

 

 
Example: 

# Perl program to illustrate  
# the foreach loop  

   
# Array  
@data = ('GEEKS', 'FOR', 'GEEKS');  

https://media.geeksforgeeks.org/wp-content/uploads/foreachloop.jpg


 
 

Output: 
GEEKSFORGEEKS 

while Loop 
• A while loop generally takes an expression in parenthesis. 

• If the expression is True then the code within the body of while loop is executed. 

• It is also known as a entry controlled loop as the condition is checked before 

executing the loop.  

Syntax : 
while (condition) 

{ 

    # Code to be executed 

} 

 

Flow Chart: 

 

Example : 

 

# Perl program to illustrate  

# the while loop  

   
# while loop  

$count = 3;  
while ($count >= 0)  

{  

   
# foreach loop  

foreach $word (@data)  
{  
    print $word 

}  



 
 

    $count = $count - 1;  
    print "GeeksForGeeks\n";  

}  

Output: 
GeeksForGeeks 

GeeksForGeeks 

GeeksForGeeks 

GeeksForGeeks 

Infinite While Loop: While loop can execute infinite times which means there is no 

terminating condition for this loop. In other words, we can say there are some conditions 

which always remain true, which causes while loop to execute infinite times or we can say it 

never terminates. 

 

# Perl program to illustrate  

# the infinite while loop  

   
# infinite while loop  

# containing condition 1   
# which is always true  
while(1)  

{  
    print "Infinite While Loop\n";  

}  

Output: 
Infinite While Loop 

Infinite While Loop 

Infinite While Loop 

Infinite While Loop 

. 

. 

. 

. 

do…. while loop 

 
• A do..while loop is almost same as a while loop.  

• The condition is checked after the first execution. 

•  It is also known as exit controlled loop as the condition is checked after executing 

the loop. 

 

Syntax: 



 
 

do { 

 

    # statments to be Executed 

 

} while(condition); 

Flow Chart: 

 
Example : 

 

# Perl program to illustrate   

# do..while Loop  

   
$a = 10;  

   
# do..While loop  
do {  
  

    print "$a ";  
    $a = $a - 1;  

} while ($a > 0);  
Output: 
10 9 8 7 6 5 4 3 2 1 

until loop 

 
• until loop is the opposite of while loop. It takes a condition in the parenthesis and it 

only runs until the condition is false.  

• Basically, it repeats an instruction or set of instruction until the condition is FALSE.  

https://media.geeksforgeeks.org/wp-content/uploads/loop3.png


 
 

• It is also entry controller loop i.e. first the condition is checked then set of instructions 

inside a block is executed. 

 

Syntax: 
until (condition)  

{ 

   # Statements to be executed 

} 

Flow Chart: 

 

Example :  

# Perl program to illustrate until Loop  

   

$a = 10;  

   
# until loop  

until ($a < 1)  
{  
    print "$a ";  

    $a = $a - 1;  
}  

Output: 
10 9 8 7 6 5 4 3 2 1 

 

Nested Loops 
A nested loop is a loop inside a loop. Nested loops are also supported by Perl Programming.  

Syntax for while nested loop in Perl: 

 

• Nested while loop 



 
 

while (condition) 

{ 

   while (condition) 

    { 

        # Code to be Executed 

    } 

} 

Example : 

# Perl program to illustrate  

# nested while Loop  

   

$a=5; 

#outer while loop 

while($a>0) 

{ 

 $b=1; 

 #inner while loop 

 while($b<=$a) 

 { 

  print "*"; 

  $b=$b+1; 

 } 

 $a=$a-1; 

 print "\n”; 

} 

Output: 

***** 

**** 

*** 

** 

* 



 
 

  

  PERL  SUBROUTINES 

 

Definition 

• A Perl function or subroutine is a group of statements that together perform 
a specific task.  

• In every programming language user want to reuse the code. 

• So the user puts the section of code in function or subroutine so that there 
will be no need to write code again and again. 

• In Perl, the terms function, subroutine, and method are the same but in 
some programming languages, these are considered different.  

• The word subroutines is used most in Perl programming because it is 
created using keyword sub. 

•  Whenever there is a call to the function, Perl stop executing all its program 
and jumps to the function to execute it and then returns back to the section 
of code that it was running earlier.  

Define and Call a Subroutine 

The general form of a subroutine definition in Perl programming language is as 
follows − 

sub subroutine_name { 

   body of the subroutine 

} 

 

The typical way of calling that Perl subroutine is as follows − 

subroutine_name( list of arguments ); 

 

In versions of Perl before 5.0, the syntax for calling subroutines was slightly 
different as shown below. This still works in the newest versions of Perl. 

   

  &subroutine_name( list of arguments ); 

 

Let's have a look into the following example, which defines a simple function 
and then call it. Because Perl compiles your program before executing it, it doesn't 
matter where you declare your subroutine. 

 

 

 



 
 

 

 
 
 

#!/usr/bin/perl 

 

# Function definition 

sub Hello { 

   print "Hello, World!\n"; 

} 

 

# Function call 

Hello(); 

When above program is executed, it produces the following result − 

Hello, World! 

 

Passing Arguments to a Subroutine 

You can pass various arguments to a subroutine like you do in any other 
programming language and they can be acessed inside the function using the special 
array @_. Thus the first argument to the function is in $_[0], the second is in $_[1], 
and so on. 

You can pass arrays and hashes as arguments like any scalar but passing 
more than one array or hash normally causes them to lose their separate identities. 
So we will use references to pass any array or hash. 

Let's try the following example, which takes a list of numbers and then prints 
their average − 

 

#!/usr/bin/perl 

 

# Function definition 

sub rectangle 

{ 

 $area=@_[0]*@_[1]; 

 $perimeter=2*(@_[0]+@_[1]); 

 print "Area of the rectangle is: $area 

sq.units\n"; 

 print "Perimeter of the rectangle is: $perimeter 

units\n"; 

} 

# Function call 



 
 

rectangle(10, 20); 

 

 

 

 

 

Output 

Area of the rectangle is: 200 sq.units 

Perimeter of the rectangle is: 60 units 

 

Passing Lists to Subroutines 

Because the @_ variable is an array, it can be used to supply lists to a 
subroutine. However, because of the way in which Perl accepts and parses lists and 
arrays, it can be difficult to extract the individual elements from @_. If you have to 
pass a list along with other scalar arguments, then make list as the last argument as 
shown below − 

 

#!/usr/bin/perl 

 

# Function definition 

sub random 

{ 

 @hobbies=@_; 

 print "Hobbies: @hobbies\n"; 

} 

@favs=("Playing Guitar","Playing Chess","Reading 

Books"); 

# Function call with list parameter 

random(@favs); 

When above program is executed, it produces the following result – 

Hobbies: Playing Guitar Playing Chess Reading Books 

Passing Hashes to Subroutines 

When you supply a hash to a subroutine or operator that accepts a list, then 
hash is automatically translated into a list of key/value pairs. For example − 

 

#!/usr/bin/perl 



 
 

 

# Function definition 

sub PrintHash { 

   my (%hash) = @_; 

 

   foreach my $key ( keys %hash ) { 

      my $value = $hash{$key}; 

      print "$key : $value\n"; 

   } 

} 

%hash = ('name' => 'Tom', 'age' => 19); 

 

# Function call with hash parameter 

PrintHash(%hash); 

 

When above program is executed, it produces the following result − 

name : Tom 

age : 19 

 

Returning Value from a Subroutine 

You can return a value from subroutine like you do in any other programming 
language. 

You can return arrays and hashes from the subroutine like any scalar but 
returning more than one array or hash normally causes them to lose their separate 
identities. So we will use references to return any array or hash from a function. 

Let's try the following example, which takes a list of numbers and then returns 
their average − 

 

#!/usr/bin/perl 

 

# Function definition 

sub circle 

{ 

 $radius=@_[0]; 

 return 3.14*$radius*$radius; 

} 

# Function call 

$area=circle(10); 

print "The area of the circle is $area sq. units\n"; 



 
 

 

When above program is executed, it produces the following result − 

The area of the circle is 314 sq.units  

 

 

Private Variables in a Subroutine 

By default, all variables in Perl are global variables, which means they can be 
accessed from anywhere in the program. But you can create private variables 
called lexical variables at any time with the my operator. 

The my operator confines a variable to a particular region of code in which it 
can be used and accessed. Outside that region, this variable cannot be used or 
accessed. This region is called its scope.. 

Following is an example showing you how to define a single or multiple private 
variables using my operator − 

 

#!/usr/bin/perl 

 

# Global variable 

$var=500; 
 

# Function definition 

sub test { 

   # Private variable  

   my $var=50; 

   print "Value of variable inside the subroutine 

$var\n"; 

} 

# Function call 

test(); 

print "Value of variable outside the subroutine 

$var\n"; 

 

When above program is executed, it produces the following result − 

 

Value of variable inside the subroutine: 50 

Value of variable outside the subroutine: 500 

 



 
 

Packages and modules 

What are Packages? 
The package statement switches the current naming context to a 

specified namespace (symbol table). Thus − 

• A package is a collection of code which lives in its own namespace. 

• A namespace is a named collection of unique variable names (also 

called a symbol table). 

• Namespaces prevent variable name collisions between packages. 

• You can explicitly refer to variables within a package using 

the :: package qualifier. 

Following is an example having main and Foo packages in a file. Here 

special variable __PACKAGE__ has been used to print the package 

name. 

#!/usr/bin/perl 

 

# This is main package 

$i = 1;  

print "Package name : " , __PACKAGE__ , " $i\n";  

 

package Foo; 

# This is Foo package 

$i = 10;  

print "Package name : " , __PACKAGE__ , " $i\n";  

 

package main; 

# This is again main package 

$i = 100;  

print "Package name : " , __PACKAGE__ , " $i\n";  

print "Package name : " , __PACKAGE__ ,  " $Foo::i\n";  

 

1; 

OUTPUT: 

Package name : main 1 

Package name : Foo 10 

Package name : main 100 

Package name : main 10 

BEGIN and END Blocks 



 
 

You may define any number of code blocks named BEGIN and END, which act as 
constructors and destructors respectively. 

BEGIN { ... } 

END { ... } 

BEGIN { ... } 

END { ... } 

• Every BEGIN block is executed after the perl script is loaded and compiled but 
before any other statement is executed. 

• Every END block is executed just before the perl interpreter exits. 

• The BEGIN and END blocks are particularly useful when creating Perl 
modules. 

Following example shows its usage − 

#!/usr/bin/perl 

 

package Foo; 

print "Begin and Block Demo\n"; 

 

BEGIN {  

   print "This is BEGIN Block\n"  

} 

 

END {  

   print "This is END Block\n"  

} 

 

1; 

OUTPUT: 

This is BEGIN Block 

Begin and Block Demo 

This is END Block 

 

What are Perl Modules? 

• A Perl module is a reusable collection of 

related variables and subroutines that perform a set of 

programming tasks.  

• There are a lot of Perl modules available  on the Comprehensive 

Perl Archive Network (CPAN).  

Perl module example 

https://www.perltutorial.org/perl-variables/
https://www.perltutorial.org/perl-subroutine/
http://www.cpan.org/
http://www.cpan.org/


 
 

Suppose you are working on a project that requires logging functionality. 

You have done a research on CPAN but didn’t find any module that 

meets your requirements. You decided to create your own Perl module. 

The first thing comes to your mind is the module name e.g., FileLogger. The 

main functionality of the FileLogger module is to: 

• Open the log file. 

• Write log messages to the log file based on log level. 

• Close the log file. 

To create  FileLogger module, you need to do the following steps: 

1. First, create your own module name, in this case, you call it FileLogger. 

2. Second, create a file named modulename.pm. In this case, you need to 

create a new file named  FileLogger.pm. pm stands for Perl module. 

3. Third, make the FileLogger module a package by using the 

syntax:  package FileLogger; at the top of the  FileLogger.pm file. 

4. Fourth, write the code for subroutines and variables, and put the code 

into the  FileLogger.pm file. 

5. Fifth, put the last statement in the  FileLogger.pm file: 1; to make the file 

returns true. 

Let’s get started to develop the FileLogger module. 

1. First, create a new file named  FileLogger.pm 

2. Second, put the package name at the top of the  FileLogger.pm 

package FileLogger; 

3. Third, put the global variable  $LEVEL so that any subroutine can 

access it. 

my $LEVEL = 1; 

4. Fourth, develop subroutines to handle logging functionality. We 

need a subroutine to open the log file for writing log messages. 

sub open{ 

   my $logfile = shift; 

   # open log file for appending 

   open(LFH, '>>', $logfile) or die "cannot open the log file $logfile: $!"; 

   # write time: 



 
 

   print LFH "Time: ", scalar(localtime), "\n"; 

} 

We need another subroutine to append log messages to the log file. We only log 

messages if the input log level is lower than the current module’s log level. We 

use  print() function to write log messages into the log file. 

sub log{ 

   my($log_level,$log_msg) = @_; 

 

   if($log_level <= $LEVEL){ 

      print LFH "$log_msg\n"; 

   } 

} 

We need a subroutine to close the log filehandle: 

sub close{ 

   close LFH; 

} 

We could allow other programs to change the log level  $LEVEL from the outside 

of the module. We can do this by creating a new subroutine set_level(). Inside the 

subroutine, we’ll check if the passed log level is a number using a regular 

expression before setting the module log level. 

sub set_level{ 

   my $log_level = shift; 

 

   if($log_level =~ /^\d+$/){ 

      $LEVEL = $log_level; 

   } 

} 

Fifth, at the end of the  FileLogger.pm file, we put the statement:  1; 

Example: 

➢ A Perl module file called Foo.pm might contain statements like this. 

#!/usr/bin/perl 

 

package Foo; 

sub bar {  

   print "Hello $_[0]\n"  

} 

 

sub blat {  

   print "World $_[0]\n"  

} 

1; 

 

Few important points about Perl modules: 

https://www.perltutorial.org/perl-regular-expression/
https://www.perltutorial.org/perl-regular-expression/


 
 

• The functions require and use will load a module. 

• Both use the list of search paths in @INC to find the module. 

• Both functions require and use call the eval function to process the 

code. 

• The 1; at the bottom causes eval to evaluate to TRUE (and thus not 

fail). 

The Require Function: 

A module can be loaded by calling the require function as follows − 

#!/usr/bin/perl 

 

require Foo; 

 

Foo::bar( "a" ); 

Foo::blat( "b" ); 

You must have noticed that the subroutine names must be fully qualified to call 

them. It would be nice to enable the subroutine bar and blat to be imported into 

our own namespace so we wouldn't have to use the Foo:: qualifier. 

The Use Function: 

A module can be loaded by calling the use function. 

#!/usr/bin/perl 

 

use Foo; 

 

bar( "a" ); 

blat( "b" ); 

Notice that we didn't have to fully qualify the package's function names. 

The use function will export a list of symbols from a module given a few added 

statements inside a module. 

require Exporter; 

@ISA = qw(Exporter); 

Then, provide a list of symbols (scalars, lists, hashes, subroutines, etc) by filling the 

list variable named @EXPORT: For Example − 

package Module; 

 



 
 

require Exporter; 

@ISA = qw(Exporter); 

@EXPORT = qw(bar blat); 

 

sub bar { print "Hello $_[0]\n" } 

sub blat { print "World $_[0]\n" } 

sub splat { print "Not $_[0]\n" }  # Not exported! 

1; 

 

Modules in different directory 

If a module is present in some sub-directory, then also we use :: to tell the path of 

the module. For example, if a module 'b' is present in a sub-directory 'a', then we 

use use a::b; to load the module b. Let's see an example to understand this: 

#p.pm is defined in directory ab which 

#is in parent directory 

use strict; 

use warnings; 

#using package p 

use ab::p; 

#Function Hello of p 

p::Hello(); 

 

 

Working with files: 

  To read or write files in perl you need to open a file handle. files 

handles in perl are yet another kind of variable. they are act as convenient 

reference handle, if you will between your program and the operating system 

about a particular file. 

  Perl is an outstanding language for reading from and writing  to 

files on disk or else where. Begin to incorporate files into your perl programs by 

learning how to open, read, write and test files. 

 



 
 

To learn:- 

• To open and close files 

• To write data to files 

• To read data from files 

• To write perl defensively 

 

Opening files:- 

  To read or write files in perl you need to open a file handle. File 

handles in perl are yet another kind of variable. They act as conversion 

reference(handles, if you will) between your program and the operating system 

about a particular file. They contain information about how the files was opened 

and how far along you are in reading (or writing) the file they also contain user-

definable attributes about how the file is to be read or write 

  Any time you need to access a file on your disk. You need to create 

a new file handled and prepare it by operating the file handled. You open file 

handled. Not surprisingly, with the open function. They syntax of open function 

is as follows: 

 

 

The open function takes a file handles as its first argument and a path name as 

the second argument. The path name indicates which file you want to open.so if 

you don’t specify a path name such as c:\windows\system\.open will try to open 

the file in the current directory. 

Closing Files:- 

To close a file handled, and therefore disassociate the file handled 

from the corresponding file you use the close function. This flushes the 

file handle’s buffers and closes the system’s file descriptor. 

 

 

 

If no FILEHANDLED is specified, then it closes the currently selected file 

handled.it returns true only if it could success fully flush the buffers and close 

the file. 

open (file handled, path name) 

 

CLOSE FILE HANDLE 

  CLOSE 



 
 

 

Path:- 

 Until now, you’ve opened only files with simple name like novel.txt that 

did not include a path. When you try to open a file name that doesn’t specify a 

directory name. perl assumes the file is in the  current directory. To open a file 

that’s in another directory. You must use a path name. the  path name describes 

the path that perl must take to find the file on your system. 

 

Reading:- 

 You can read from perl’s file handling in a couple of different ways. The 

most common method is to use the file input operator also called the angle 

operator(<>). To read a file handle, simply put the file handle name inside the 

angle operator and assign the value to a variable. 

 

 

 

  

The angle operator in a scalar context reads one line of input from the file. 

When called after the entire file has been read, the angle operator returns the 

value undef. 

 

Writing:- 

 To write data to a file, you must first have a file-handle open for writing. 

Up till now, all open statements you have seen have opened the file handle for 

reading only. The syntax for opening a file for writing is almost identical to that 

for reading. 

 

 

  

 

Open(my file ,”my file”)||die “can’t open my file: 

$line=<MYFILE>; 

#Reading the file handle 

Open(file handle,”>path name”) 
Open(file handle,”>>path name”) 

 



 
 

The signifies to perl that the file specified at the path name should be over 

written with new data, that any existing data should be discarded and the file 

handle is open for writing. 

 

 

Perl Denfensive programming:- 

• Use strict 

• #!/usr/bin/perl-w 

• Check all syscall returns values, printing $: 

• Watch for external program failures in$? 

• Check$ @ after eval” “or sillee 

• Parameter asserts 

• #!/usr/bin/perl-T 

• Always have an else after a chain of elseif  

• Put commands at the end of lists to so your program won’t break 

if some one insterts another item at the end of the list. 

 

Data manipulation in perl:  

• The simplest uses of perl involve reading or  more text files a lines at a 

time,changeing The line in fashion, and sending the result to an output file. 

• Usually the perl program is stored in a file but simple, “one liner” applications can 

be written the commands line after a-e flag as in sed and awk. 

• By andy lester, andy manages programmers for follett library resources 

 

❖ -e-command 

❖ the diamond operator  

❖ n and p ; automatic looping power houses 

❖  l: line -ending handling 

❖ -i: edit in place 

❖   -o[octal]:specify input-record separator 

-e command: 

• The most useful way to use the command-line options is writing perl one-liners right 

in the shell. 

• e e-option is  the basis for most command-line programs. 

• It accepts the value of the parameter as the source text for a program. 

• Since this is a single statement in a block, you can omit the semicolon. 

• When e-option is uses, perl no longer looks for a program name on the command 

line. 



 
 

    $perl-e print “hello,world !  \n “ 

Escaping shell characters:  

• When you  re creating command-line programs it’s important to pay attention. 

• L’ve  quote with single quotes not double quotes for two reasons. 

• First, I want to be able to use double quotes doen’t nest in the shell. 

• Second, I have to prevent shell interpolation,and single quote make it easy. 

• You can escape the shell variables with a backslash. 

The diamond operator: 

• Perl’s  diamond operator, <>,has a great deal of magic built into it making operations 

on multiple files easy.so that your program can operator on three files at once?use the 

diamond operator instead. 

• Perl keeps track on which file your on and opens  and clases file handle as appropriate 

with the diamond operator. 

• Perl keeps the name of currently open file in $ARGV. The $line counter does not reset 

at the beginning of each file.The diamond operator figures programming in much perl 

command-line magic so , it you to get comfortable with it. 

 

 

-n and -p: Automatic looping power houses  

• The -n and -p options are the real work horse options.  They derive from the AWK 

metaphor of "Do something to every line in the file" and work closely with the 

diamond operator. 

-l: Line Ending Handling 

• when you're working with lines in a file.   You will find you are doing lots chomping 

and print in the simplest sense adding -l when you are using -n or -p automatically 

does a champ on the input record and adds "\n" after everything you print.  It makes 

command-line one-line much easier. 

• This example only shows the first 40 characters of each line in the input of whether 

or not the line is longer than 40 characters not counting the line ending. 

• For command-line programmers -l is a good send because it means  you can use 

print $800 instead of print $800 "\n" to get the result what you want. 

-i: Edit in Place 

• All the options you've learned so far are great for writing  filters where a number of 

files or standard input  get used out to standard output unfortunately. 

• perl comes to the resource again with the -i option.  Adding -i tells perl to edit your 

files in place. 



 
 

-o[octal]: specify input record seperate 

• When working on the command line you want to specify your input record 

seperator. 

• This is possible with e BEGIN {$ / : ...}, its easier with the -o option. 

• Two special values for the -o option and are -oo for paragraph mode equivalent to 

$/="" and -o>>> to entire files equivalent to $/=undef.  

   

 

 



UNIT -V 

Python Syntax and Style – Python Objects – Numbers – Sequences : Strings –Lists 

and Tuples – Dictionaries – Conditionals and Loops – Files – Input and Output –

Errors and Exceptions – Functions – Modules – Classes and OOP – Execution 

Environment. 

 

Python Introduction 

What is Python? 

Python is a popular programming language. It was created by 

Guido van Rossum, and released in 1991. 

It is used for: 

web development (server-side), 

software development, 

mathematics, 

system scripting. 

What can Python do? 

Python can be used on a server to create web applications. 

Python can be used alongside software to create workflows. 

Python can connect to database systems. It can also read and 
modify files. 

Python can be used to handle big data and perform complex 
mathematics. 

Python can be used for rapid prototyping, or for production-
ready software development. 



 

 

 

Why Python? 

Python works on different platforms (Windows, Mac, Linux, 

Raspberry Pi, etc). 

Python has a simple syntax similar to the English language. 

Python has syntax that allows developers to write programs 
with fewer lines than some other programming languages. 

Python runs on an interpreter system, meaning that code can 

be executed as soon as it is written. This means that 
prototyping can be very quick. 

Python can be treated in a procedural way, an object-orientated 
way or a functional way. 

 

Python Syntax compared to other programming languages 

Python was designed for readability, and has some similarities 

to the English language with influence from mathematics. 

Python uses new lines to complete a command, as opposed to 

other programming languages which often use semicolons or 
parentheses. 

Python relies on indentation, using whitespace, to define scope; 

such as the scope of loops, functions and classes. Other 

programming languages often use curly-brackets for this 

purpose. 

 



Python Syntax and Style 

Execute Python Syntax 

As we learned in the previous page, Python syntax can be 

executed by writing directly in the Command Line: 

>>> print("Hello, World!") 
Hello, World! 

Or by creating a python file on the server, using the .py file 

extension, and running it in the Command Line: 

C:\Users\Your Name>python myfile.py 

 

Python Indentation 

Indentation refers to the spaces at the beginning of a code line. 

Where in other programming languages the indentation in code 

is for readability only, the indentation in Python is very 

important. 

Python uses indentation to indicate a block of code. 

Example 

if 5 > 2: 
  print("Five is greater than two!") 

Python will give you an error if you skip the indentation: 

Example 



Syntax Error: 

if 5 > 2: 
print("Five is greater than two!") 

The number of spaces is up to you as a programmer, but it has 

to be at least one. 

Example 

if 5 > 2: 
 print("Five is greater than two!")  
if 5 > 2: 
        print("Five is greater than two!")  

You have to use the same number of spaces in the same block 

of code, otherwise Python will give you an error: 

Example 

Syntax Error: 

if 5 > 2: 
 print("Five is greater than two!") 
        print("Five is greater than two!") 

 

 

Python Variables 

In Python, variables are created when you assign a value to it: 

Example 



Variables in Python: 

x = 5 
y = "Hello, World!" 

Python has no command for declaring a variable. 

 

 

 

Comments 

Python has commenting capability for the purpose of in-code 

documentation. 

Comments start with a #, and Python will render the rest of the 

line as a comment: 

Example 

Comments in Python: 

#This is a comment. 
print("Hello, World!") 

 

 Test Yourself With Exercises 

 

Python Comments 

Comments can be used to explain Python code. 



Comments can be used to make the code more readable. 

Comments can be used to prevent execution when testing code. 

 

 

Creating a Comment 

Comments starts with a #, and Python will ignore them: 

Example 

#This is a comment 
print("Hello, World!") 

 

Comments can be placed at the end of a line, and Python will 

ignore the rest of the line: 

Example 

print("Hello, World!") #This is a comment 

Comments does not have to be text to explain the code, it can 

also be used to prevent Python from executing code: 

 

Example 

#print("Hello, World!") 
print("Cheers, Mate!") 

 

Multi Line Comments 

Python does not really have a syntax for multi line comments. 

To add a multiline comment you could insert a # for each line: 



Example 

#This is a comment 
#written in 
#more than just one line 
print("Hello, World!") 

 

Or, not quite as intended, you can use a multiline string. 

Since Python will ignore string literals that are not assigned to a 

variable, you can add a multiline string (triple quotes) in your 

code, and place your comment inside it: 

Example 

""" 
This is a comment 
written in 
more than just one line 
""" 
print("Hello, World!") 

 

As long as the string is not assigned to a variable, Python will read 

the code, but then ignore it, and you have made a multiline 

comment. 

Python Numbers 

There are three numeric types in Python: 

 int 
 float 
 complex 

Variables of numeric types are created when you assign a value to 

them: 



Example 

x = 1    # int 
y = 2.8  # float 
z = 1j   # complex 
 

To verify the type of any object in Python, use 

the type() function: 

Example 

print(type(x)) 
print(type(y)) 
print(type(z)) 
 

Int 

Int, or integer, is a whole number, positive or negative, without 

decimals, of unlimited length. 

Example 

Integers: 

x = 1 
y = 35656222554887711 
z = -3255522 
 
print(type(x)) 
print(type(y)) 
print(type(z)) 

Float 

Float, or "floating point number" is a number, positive or negative, 

containing one or more decimals. 

Example 



Floats: 

x = 1.10 
y = 1.0 
z = -35.59 
 
print(type(x)) 
print(type(y)) 
print(type(z)) 

Float can also be scientific numbers with an "e" to indicate the 

power of 10. 

Example 

Floats: 

x = 35e3 
y = 12E4 
z = -87.7e100 
print(type(x)) 
print(type(y)) 
print(type(z)) 

Complex 

Complex numbers are written with a "j" as the imaginary part: 

Example 

Complex: 

x = 3+5j 
y = 5j 
z = -5j 
print(type(x)) 
print(type(y)) 
print(type(z)) 

Type Conversion 



You can convert from one type to another with the int(), float(), 

and complex() methods: 

Example 

Convert from one type to another: 

x = 1    # int 
y = 2.8  # float 
z = 1j   # complex 
 
#convert from int to float: 
a = float(x) 
 
#convert from float to int: 
b = int(y) 
 
#convert from int to complex: 
c = complex(x) 
 
print(a) 
print(b) 
print(c) 
 
print(type(a)) 
print(type(b)) 
print(type(c)) 

 

Note: You cannot convert complex numbers into another number 

type. 

Random Number 

Python does not have a random() function to make a random 

number, but Python has a built-in module called random that can 

be used to make random numbers: 

Example 



Import the random module, and display a random number 

between 1 and 9: 

import random 
 
print(random.randrange(1, 10)) 

 

Python Strings 

String Literals 

String literals in python are surrounded by either single quotation 

marks, or double quotation marks. 

'hello' is the same as "hello". 

You can display a string literal with the print() function: 

Example 

print("Hello") 
print('Hello') 

Assign String to a Variable 

Assigning a string to a variable is done with the variable name 

followed by an equal sign and the string: 

Example 

a = "Hello" 
print(a) 

Multiline Strings 

You can assign a multiline string to a variable by using three 

quotes: 

Example 



You can use three double quotes: 

a = """Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, 
sed do eiusmod tempor incididunt 
ut labore et dolore magna aliqua.""" 
print(a) 

Or three single quotes: 

Example 

a = '''Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, 
sed do eiusmod tempor incididunt 
ut labore et dolore magna aliqua.''' 
print(a) 

Note: in the result, the line breaks are inserted at the same 

position as in the code. 

 

 

Strings are Arrays 

Like many other popular programming languages, strings in 

Python are arrays of bytes representing unicode characters. 

However, Python does not have a character data type, a single 

character is simply a string with a length of 1. 

Square brackets can be used to access elements of the string. 

Example 

Get the character at position 1 (remember that the first character 

has the position 0): 



a = "Hello, World!" 
print(a[1]) 

Slicing 

You can return a range of characters by using the slice syntax. 

Specify the start index and the end index, separated by a colon, 

to return a part of the string. 

Example 

Get the characters from position 2 to position 5 (not included): 

b = "Hello, World!" 
print(b[2:5]) 

 

Negative Indexing 

Use negative indexes to start the slice from the end of the string: 

Example 

Get the characters from position 5 to position 1 (not included), 

starting the count from the end of the string: 

b = "Hello, World!" 
print(b[-5:-2]) 

 

String Length 

To get the length of a string, use the len() function. 

Example 

The len() function returns the length of a string: 

a = "Hello, World!" 
print(len(a)) 



 

String Methods 

Python has a set of built-in methods that you can use on strings. 

Example 

The strip() method removes any whitespace from the beginning 

or the end: 

a = " Hello, World! " 
print(a.strip()) # returns "Hello, World!" 

 

Example 

The lower() method returns the string in lower case: 

a = "HELLO, World!" 
print(a.lower()) 

Example 

The upper() method returns the string in upper case: 

a = "Hello, World!" 
print(a.upper()) 

 

Example 

The replace() method replaces a string with another string: 

a = "Hello, World!" 
print(a.replace("H", "J")) 

 

Example 

The split() method splits the string into substrings if it finds 

instances of the separator: 



a = "Hello, World!" 
print(a.split(",")) # returns ['Hello', ' World!'] 

 

 

Check String 

To check if a certain phrase or character is present in a string, we 

can use the keywords in or not in. 

Example 

Check if the phrase "ain" is present in the following text: 

txt = "The rain in Spain stays mainly in the plain" 
x = "ain" in txt 
print(x) 
$returns true if it is available in the string 

 

Example 

Check if the phrase "ain" is NOT present in the following text: 

txt = "The rain in Spain stays mainly in the plain" 
x = "ain" not in txt 
print(x)  

 

String Concatenation 

To concatenate, or combine, two strings you can use the + 

operator. 

Example 

Merge variable a with variable b into variable c: 



a = "Hello" 
b = "World" 
c = a + b 
print(c) 

Example 

To add a space between them, add a " ": 

a = "Hello" 
b = "World" 
c = a + " " + b 
print(c) 

String Format 

As we learned in the Python Variables chapter, we cannot combine 

strings and numbers like this: 

Example 

age = 36 
txt = "My name is John, I am " + age 
 
print(txt) 

But we can combine strings and numbers by using 

the format() method! 

The format() method takes the passed arguments, formats them, 

and places them in the string where the placeholders {} are: 

Example 

Use the format() method to insert numbers into strings: 

age = 36 
txt = "My name is John, and I am {}" 
print(txt.format(age)) 

The format() method takes unlimited number of arguments, and 

are placed into the respective placeholders: 



Example 

quantity = 3 
itemno = 567 
price = 49.95 
myorder = "I want {} pieces of item {} for {} dollars." 
print(myorder.format(quantity, itemno, price)) 

You can use index numbers {0} to be sure the arguments are 

placed in the correct placeholders: 

Example 

quantity = 3 
itemno = 567 
price = 49.95 
myorder = "I want to pay {2} dollars for {0} pieces of item 
{1}." 
print(myorder.format(quantity, itemno, price)) 

 

Escape Character 

To insert characters that are illegal in a string, use an escape 

character. 

An escape character is a backslash \ followed by the character you 

want to insert. 

An example of an illegal character is a double quote inside a string 

that is surrounded by double quotes: 

Example 

You will get an error if you use double quotes inside a string that 

is surrounded by double quotes: 

txt = "We are the so-called "Vikings" from the north." 



To fix this problem, use the escape character \": 

Example 

The escape character allows you to use double quotes when you 

normally would not be allowed: 

txt = "We are the so-called \"Vikings\" from the north." 

Other escape characters used in Python: 

Code Result Try it 

\' Single Quote Try it »  

\\ Backslash Try it »  

\n New Line Try it »  

\r Carriage Return Try it »  

\t Tab Try it »  

\b Backspace Try it »  

https://www.w3schools.com/python/trypython.asp?filename=demo_string_escape2
https://www.w3schools.com/python/trypython.asp?filename=demo_string_backslash
https://www.w3schools.com/python/trypython.asp?filename=demo_string_newline
https://www.w3schools.com/python/trypython.asp?filename=demo_string_r
https://www.w3schools.com/python/trypython.asp?filename=demo_string_t
https://www.w3schools.com/python/trypython.asp?filename=demo_string_b


\f Form Feed  

\ooo Octal value Try it »  

\xhh Hex value Try it »  

 

String Methods 

Python has a set of built-in methods that you can use on strings. 

Note: All string methods returns new values. They do not change 

the original string. 

Method Description 

capitalize()  Converts the first character to upper case 

casefold()  Converts string into lower case 

center()  Returns a centered string 

https://www.w3schools.com/python/trypython.asp?filename=demo_string_octal
https://www.w3schools.com/python/trypython.asp?filename=demo_string_hex
https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_string_center.asp


count()  Returns the number of times a specified value 

occurs in a string 

encode()  Returns an encoded version of the string 

endswith()  Returns true if the string ends with the specified 

value 

expandtabs()  Sets the tab size of the string 

find()  Searches the string for a specified value and 

returns the position of where it was found 

format()  Formats specified values in a string 

format_map() Formats specified values in a string 

index()  Searches the string for a specified value and 

returns the position of where it was found 

https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_encode.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_expandtabs.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_index.asp


isalnum()  Returns True if all characters in the string are 

alphanumeric 

isalpha()  Returns True if all characters in the string are in 
the alphabet 

isdecimal()  Returns True if all characters in the string are 

decimals 

isdigit()  Returns True if all characters in the string are 

digits 

isidentifier()  Returns True if the string is an identifier 

islower()  Returns True if all characters in the string are 
lower case 

isnumeric()  Returns True if all characters in the string are 

numeric 

isprintable()  Returns True if all characters in the string are 

printable 

https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_isidentifier.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isprintable.asp


isspace()  Returns True if all characters in the string are 

whitespaces 

istitle()  Returns True if the string follows the rules of a 
title 

isupper()  Returns True if all characters in the string are 

upper case 

join()  Joins the elements of an iterable to the end of the 

string 

ljust()  Returns a left justified version of the string 

lower()  Converts a string into lower case 

lstrip()  Returns a left trim version of the string 

maketrans()  Returns a translation table to be used in 

translations 

https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_string_ljust.asp
https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_maketrans.asp


partition()  Returns a tuple where the string is parted into 

three parts 

replace()  Returns a string where a specified value is 
replaced with a specified value 

rfind()  Searches the string for a specified value and 

returns the last position of where it was found 

rindex()  Searches the string for a specified value and 

returns the last position of where it was found 

rjust()  Returns a right justified version of the string 

rpartition()  Returns a tuple where the string is parted into 
three parts 

rsplit()  Splits the string at the specified separator, and 

returns a list 

rstrip()  Returns a right trim version of the string 

https://www.w3schools.com/python/ref_string_partition.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rjust.asp
https://www.w3schools.com/python/ref_string_rpartition.asp
https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_rstrip.asp


split()  Splits the string at the specified separator, and 

returns a list 

splitlines()  Splits the string at line breaks and returns a list 

startswith()  Returns true if the string starts with the specified 

value 

strip()  Returns a trimmed version of the string 

swapcase()  Swaps cases, lower case becomes upper case and 

vice versa 

title()  Converts the first character of each word to upper 
case 

translate()  Returns a translated string 

upper()  Converts a string into upper case 

https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_splitlines.asp
https://www.w3schools.com/python/ref_string_startswith.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_string_translate.asp
https://www.w3schools.com/python/ref_string_upper.asp


zfill()  Fills the string with a specified number of 0 values 

at the beginning 

 

Example: 

txt = "hello, and welcome to my world." 

 

x = txt.capitalize() 

 

print (x) 

 

 

Python Lists 

Python Collections (Arrays) 

There are four collection data types in the Python programming 

language: 

 List is a collection which is ordered and changeable. Allows 

duplicate members. 

 Tuple is a collection which is ordered and unchangeable. 

Allows duplicate members. 

 Set is a collection which is unordered and unindexed. No 

duplicate members. 

 Dictionary is a collection which is unordered, changeable and 
indexed. No duplicate members. 

When choosing a collection type, it is useful to understand the 

properties of that type. Choosing the right type for a particular 

data set could mean retention of meaning, and, it could mean an 

increase in efficiency or security. 

https://www.w3schools.com/python/ref_string_zfill.asp


List 

A list is a collection which is ordered and changeable. In Python 

lists are written with square brackets. 

Example 

Create a List: 

thislist = ["apple", "banana", "cherry"] 
print(thislist) 

 

Access Items 

You access the list items by referring to the index number: 

Example 

Print the second item of the list: 

thislist = ["apple", "banana", "cherry"] 
print(thislist[1]) 

Try it Yourself » 

Negative Indexing 

Negative indexing means beginning from the end, -1 refers to the 

last item, -2 refers to the second last item etc. 

Example 

Print the last item of the list: 

thislist = ["apple", "banana", "cherry"] 
print(thislist[-1]) 

Range of Indexes 

https://www.w3schools.com/python/trypython.asp?filename=demo_list_access


You can specify a range of indexes by specifying where to start 

and where to end the range. 

When specifying a range, the return value will be a new list with 

the specified items. 

Example 

Return the third, fourth, and fifth item: 

thislist = 
["apple", "banana", "cherry", "orange", "kiwi", "melon", "man
go"] 
print(thislist[2:5]) 

Range of Negative Indexes 

Specify negative indexes if you want to start the search from the 

end of the list: 

Example 

This example returns the items from index -4 (included) to index -

1 (excluded) 

thislist = 
["apple", "banana", "cherry", "orange", "kiwi", "melon", "man
go"] 
print(thislist[-4:-1]) 

 

Change Item Value 

To change the value of a specific item, refer to the index number: 

Example 

Change the second item: 



thislist = ["apple", "banana", "cherry"] 
thislist[1] = "blackcurrant" 
print(thislist) 

 

 

 

Loop Through a List 

You can loop through the list items by using a for loop: 

Example 

Print all items in the list, one by one: 

thislist = ["apple", "banana", "cherry"] 
for x in thislist: 
  print(x) 

You will learn more about for loops in our Python For 

Loops Chapter. 

 

Check if Item Exists 

To determine if a specified item is present in a list use 

the in keyword: 

Example 

Check if "apple" is present in the list: 

thislist = ["apple", "banana", "cherry"] 
if "apple" in thislist: 
  print("Yes, 'apple' is in the fruits list") 

https://www.w3schools.com/python/python_for_loops.asp
https://www.w3schools.com/python/python_for_loops.asp
https://www.w3schools.com/python/python_for_loops.asp


List Length 

To determine how many items a list has, use the len() function: 

Example 

Print the number of items in the list: 

thislist = ["apple", "banana", "cherry"] 
print(len(thislist)) 

 

Add Items 

To add an item to the end of the list, use the append() method: 

Example 

Using the append() method to append an item: 

thislist = ["apple", "banana", "cherry"] 
thislist.append("orange") 
print(thislist) 

 

To add an item at the specified index, use the insert() method: 

Example 

Insert an item as the second position: 

thislist = ["apple", "banana", "cherry"] 
thislist.insert(1, "orange") 
print(thislist) 

 

Remove Item 



There are several methods to remove items from a list: 

Example 

The remove() method removes the specified item: 

thislist = ["apple", "banana", "cherry"] 
thislist.remove("banana") 
print(thislist) 

 

Example 

The pop() method removes the specified index, (or the last item if 

index is not specified): 

thislist = ["apple", "banana", "cherry"] 
thislist.pop() 
print(thislist) 

 

Example 

The del keyword removes the specified index: 

thislist = ["apple", "banana", "cherry"] 
del thislist[0] 
print(thislist) 

 

Example 

The del keyword can also delete the list completely: 

thislist = ["apple", "banana", "cherry"] 
del thislist 

 

Example 

The clear() method empties the list: 



thislist = ["apple", "banana", "cherry"] 
thislist.clear() 
print(thislist) 

 

Copy a List 

You cannot copy a list simply by typing list2 = list1, 

because: list2 will only be a reference to list1, and changes 

made in list1 will automatically also be made in list2. 

There are ways to make a copy, one way is to use the built-in List 

method copy(). 

Example 

Make a copy of a list with the copy() method: 

thislist = ["apple", "banana", "cherry"] 
mylist = thislist.copy() 
print(mylist) 

Another way to make a copy is to use the built-in method list(). 

Example 

Make a copy of a list with the list() method: 

thislist = ["apple", "banana", "cherry"] 
mylist = list(thislist) 
print(mylist) 

 

Join Two Lists 

There are several ways to join, or concatenate, two or more lists 

in Python. 



One of the easiest ways are by using the + operator. 

Example 

Join two list: 

list1 = ["a", "b" , "c"] 
list2 = [1, 2, 3] 
 
list3 = list1 + list2 
print(list3) 

Another way to join two lists are by appending all the items from 

list2 into list1, one by one: 

Example 

Append list2 into list1: 

list1 = ["a", "b" , "c"] 
list2 = [1, 2, 3] 
 
for x in list2: 
  list1.append(x) 
 
print(list1) 

Or you can use the extend() method, which purpose is to add 

elements from one list to another list: 

Example 

Use the extend() method to add list2 at the end of list1: 

list1 = ["a", "b" , "c"] 
list2 = [1, 2, 3] 
 
list1.extend(list2) 
print(list1) 



 

The list() Constructor 

It is also possible to use the list() constructor to make a new 

list. 

Example 

Using the list() constructor to make a List: 

thislist = list(("apple", "banana", "cherry")) # note the 
double round-brackets 
print(thislist) 

 

List Methods 

Python has a set of built-in methods that you can use on lists. 

Method Description 

append()  Adds an element at the end of the list 

clear()  Removes all the elements from the list 

copy()  Returns a copy of the list 

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp


count()  Returns the number of elements with the specified 

value 

extend()  Add the elements of a list (or any iterable), to the end 
of the current list 

index()  Returns the index of the first element with the 

specified value 

insert()  Adds an element at the specified position 

pop()  Removes the element at the specified position 

remove()  Removes the item with the specified value 

reverse()  Reverses the order of the list 

sort()  Sorts the list 

 

 

https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp


Python Tuples 

A tuple is a collection which is ordered and unchangeable. In 

Python tuples are written with round brackets. 

Example 

Create a Tuple: 

thistuple = ("apple", "banana", "cherry") 
print(thistuple) 

 

Access Tuple Items 

You can access tuple items by referring to the index number, 

inside square brackets: 

Example 

Print the second item in the tuple: 

thistuple = ("apple", "banana", "cherry") 
print(thistuple[1]) 

Negative Indexing 

Negative indexing means beginning from the end, -1 refers to the 

last item, -2 refers to the second last item etc. 

Example 

Print the last item of the tuple: 

thistuple = ("apple", "banana", "cherry") 
print(thistuple[-1]) 

 

Range of Indexes 



You can specify a range of indexes by specifying where to start 

and where to end the range. 

When specifying a range, the return value will be a new tuple with 

the specified items. 

Example 

Return the third, fourth, and fifth item: 

thistuple = 
("apple", "banana", "cherry", "orange", "kiwi", "melon", "man
go") 
print(thistuple[2:5]) 

Try it Yourself » 

Note: The search will start at index 2 (included) and end at index 

5 (not included). 

Remember that the first item has index 0. 

Range of Negative Indexes 

Specify negative indexes if you want to start the search from the 

end of the tuple: 

Example 

This example returns the items from index -4 (included) to index -

1 (excluded) 

thistuple = 
("apple", "banana", "cherry", "orange", "kiwi", "melon", "man
go") 
print(thistuple[-4:-1]) 

 

Change Tuple Values 

Once a tuple is created, you cannot change its values. Tuples 

are unchangeable, or immutable as it also is called. 

https://www.w3schools.com/python/trypython.asp?filename=demo_tuple_range


But there is a workaround. You can convert the tuple into a list, 

change the list, and convert the list back into a tuple. 

Example 

Convert the tuple into a list to be able to change it: 

x = ("apple", "banana", "cherry") 
y = list(x) 
y[1] = "kiwi" 
x = tuple(y) 
 
print(x) 

Loop Through a Tuple 

You can loop through the tuple items by using a for loop. 

Example 

Iterate through the items and print the values: 

 
thistuple = ("apple", "banana", "cherry") 
for x in thistuple: 
  print(x) 

Check if Item Exists 

To determine if a specified item is present in a tuple use 

the in keyword: 

Example 

Check if "apple" is present in the tuple: 

thistuple = ("apple", "banana", "cherry") 
if "apple" in thistuple: 
  print("Yes, 'apple' is in the fruits tuple") 

Try it Yourself » 

https://www.w3schools.com/python/trypython.asp?filename=demo_tuple_in


 

Tuple Length 

To determine how many items a tuple has, use the len() method: 

Example 

Print the number of items in the tuple: 

thistuple = ("apple", "banana", "cherry") 
print(len(thistuple)) 

Add Items 

Once a tuple is created, you cannot add items to it. Tuples 

are unchangeable. 

Example 

You cannot add items to a tuple: 

thistuple = ("apple", "banana", "cherry") 
thistuple[3] = "orange" # This will raise an error 
print(thistuple) 

 

 

Remove Items 

Note: You cannot remove items in a tuple. 

Tuples are unchangeable, so you cannot remove items from it, 

but you can delete the tuple completely: 

Example 

The del keyword can delete the tuple completely: 



thistuple = ("apple", "banana", "cherry") 
del thistuple 
print(thistuple) #this will raise an error because the tuple 
no longer exists 

 

 

Join Two Tuples 

To join two or more tuples you can use the + operator: 

Example 

Join two tuples: 

tuple1 = ("a", "b" , "c") 
tuple2 = (1, 2, 3) 
 
tuple3 = tuple1 + tuple2 
print(tuple3) 

 

 

 

The tuple() Constructor 

It is also possible to use the tuple() constructor to make a tuple. 

Example 

Using the tuple() method to make a tuple: 

thistuple = tuple(("apple", "banana", "cherry")) # note the 
double round-brackets 
print(thistuple) 



 

 

 

 

Tuple Methods 

Python has two built-in methods that you can use on tuples. 

Method Description 

count()  Returns the number of times a specified value occurs in 
a tuple 

index()  Searches the tuple for a specified value and returns the 

position of where it was found 

 

 

 

Python Dictionaries 

A dictionary is a collection which is unordered, changeable and 

indexed. In Python dictionaries are written with curly brackets, 

and they have keys and values. 

Example 

https://www.w3schools.com/python/ref_tuple_count.asp
https://www.w3schools.com/python/ref_tuple_index.asp


Create and print a dictionary: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
print(thisdict) 
 

Accessing Items 

You can access the items of a dictionary by referring to its key 

name, inside square brackets: 

Example 

Get the value of the "model" key: 

x = thisdict["model"] 

 

There is also a method called get() that will give you the same 

result: 

Example 

Get the value of the "model" key: 

x = thisdict.get("model") 
 

 

Change Values 

You can change the value of a specific item by referring to its key 

name: 

Example 



Change the "year" to 2018: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
thisdict["year"] = 2018 
 

 

Loop Through a Dictionary 

You can loop through a dictionary by using a for loop. 

When looping through a dictionary, the return value are 

the keys of the dictionary, but there are methods to return 

the values as well. 

Example 

Print all key names in the dictionary, one by one: 

for x in thisdict: 
  print(x) 

Example 

Print all values in the dictionary, one by one: 

for x in thisdict: 
  print(thisdict[x]) 

Example 

You can also use the values() method to return values of a 

dictionary: 

for x in thisdict.values(): 
  print(x) 

Example 



Loop through both keys and values, by using the items() method: 

for x, y in thisdict.items(): 
  print(x, y) 

 

Check if Key Exists 

To determine if a specified key is present in a dictionary use 

the in keyword: 

Example 

Check if "model" is present in the dictionary: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
if "model" in thisdict: 
  print("Yes, 'model' is one of the keys in the thisdict 
dictionary") 

 

Dictionary Length 

To determine how many items (key-value pairs) a dictionary has, 

use the len() function. 

Example 

Print the number of items in the dictionary: 

print(len(thisdict)) 

 



Adding Items 

Adding an item to the dictionary is done by using a new index key 

and assigning a value to it: 

Example 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
thisdict["color"] = "red" 
print(thisdict) 

 

 

Removing Items 

There are several methods to remove items from a dictionary: 

Example 

The pop() method removes the item with the specified key name: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
thisdict.pop("model") 
print(thisdict) 

Example 

The popitem() method removes the last inserted item (in versions 

before 3.7, a random item is removed instead): 

thisdict = { 
  "brand": "Ford", 



  "model": "Mustang", 
  "year": 1964 
} 
thisdict.popitem() 
print(thisdict) 

Example 

The del keyword removes the item with the specified key name: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
del thisdict["model"] 
print(thisdict) 

Example 

The del keyword can also delete the dictionary completely: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
del thisdict 
print(thisdict) #this will cause an error because "thisdict" 
no longer exists. 

Example 

The clear() method empties the dictionary: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
thisdict.clear() 
print(thisdict) 



 

Copy a Dictionary 

You cannot copy a dictionary simply by typing dict2 = dict1, 

because: dict2 will only be a reference to dict1, and changes 

made in dict1 will automatically also be made in dict2. 

There are ways to make a copy, one way is to use the built-in 

Dictionary method copy(). 

Example 

Make a copy of a dictionary with the copy() method: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
mydict = thisdict.copy() 
print(mydict) 

Another way to make a copy is to use the built-in function dict(). 

Example 

Make a copy of a dictionary with the dict() function: 

thisdict = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 
mydict = dict(thisdict) 
print(mydict) 

Nested Dictionaries 



A dictionary can also contain many dictionaries, this is called 

nested dictionaries. 

Example 

Create a dictionary that contain three dictionaries: 

myfamily = { 
  "child1" : { 
    "name" : "Emil", 
    "year" : 2004 
  }, 
  "child2" : { 
    "name" : "Tobias", 
    "year" : 2007 
  }, 
  "child3" : { 
    "name" : "Linus", 
    "year" : 2011 
  } 
} 

Or, if you want to nest three dictionaries that already exists as 

dictionaries: 

Example 

Create three dictionaries, then create one dictionary that will 

contain the other three dictionaries: 

child1 = { 
  "name" : "Emil", 
  "year" : 2004 
} 
child2 = { 
  "name" : "Tobias", 
  "year" : 2007 
} 
child3 = { 
  "name" : "Linus", 



  "year" : 2011 
} 
 
myfamily = { 
  "child1" : child1, 
  "child2" : child2, 
  "child3" : child3 
} 

 

The dict() Constructor 

It is also possible to use the dict() constructor to make a new 

dictionary: 

Example 

thisdict = dict(brand="Ford", model="Mustang", year=1964) 
# note that keywords are not string literals 
# note the use of equals rather than colon for the assignment 
print(thisdict) 

 

 

Dictionary Methods 

Python has a set of built-in methods that you can use on 

dictionaries. 

Method Description 

clear()  Removes all the elements from the dictionary 

https://www.w3schools.com/python/ref_dictionary_clear.asp


copy()  Returns a copy of the dictionary 

fromkeys()  Returns a dictionary with the specified keys and 
value 

get()  Returns the value of the specified key 

items()  Returns a list containing a tuple for each key value 

pair 

keys()  Returns a list containing the dictionary's keys 

pop()  Removes the element with the specified key 

popitem()  Removes the last inserted key-value pair 

setdefault()  Returns the value of the specified key. If the key 

does not exist: insert the key, with the specified 
value 

https://www.w3schools.com/python/ref_dictionary_copy.asp
https://www.w3schools.com/python/ref_dictionary_fromkeys.asp
https://www.w3schools.com/python/ref_dictionary_get.asp
https://www.w3schools.com/python/ref_dictionary_items.asp
https://www.w3schools.com/python/ref_dictionary_keys.asp
https://www.w3schools.com/python/ref_dictionary_pop.asp
https://www.w3schools.com/python/ref_dictionary_popitem.asp
https://www.w3schools.com/python/ref_dictionary_setdefault.asp


update()  Updates the dictionary with the specified key-value 

pairs 

values()  Returns a list of all the values in the dictionary 

 

 

 

 

 

CONDITIONAL AND LOOPS 

Python Conditions and If statements 

Python supports the usual logical conditions from mathematics: 

 Equals: a == b 

 Not Equals: a != b 

 Less than: a < b 

 Less than or equal to: a <= b 

 Greater than: a > b 

 Greater than or equal to: a >= b 

These conditions can be used in several ways, most commonly in 

"if statements" and loops. 

An "if statement" is written by using the if keyword. 

Example 

If statement: 

https://www.w3schools.com/python/ref_dictionary_update.asp
https://www.w3schools.com/python/ref_dictionary_values.asp


a = 33 
b = 200 
if b > a: 
  print("b is greater than a") 

In this example we use two variables, a and b, which are used as 

part of the if statement to test whether b is greater than a. 

As a is 33, and b is 200, we know that 200 is greater than 33, and 

so we print to screen that "b is greater than a". 

Indentation 

Python relies on indentation (whitespace at the beginning of a 

line) to define scope in the code. Other programming languages 

often use curly-brackets for this purpose. 

Example 

If statement, without indentation (will raise an error): 

a = 33 
b = 200 
if b > a: 
print("b is greater than a") # you will get an error 

 

 

 

 

Elif 

The elif keyword is pythons way of saying "if the previous 

conditions were not true, then try this condition". 

Example 



a = 33 
b = 33 
if b > a: 
  print("b is greater than a") 
elif a == b: 
  print("a and b are equal") 

 

In this example a is equal to b, so the first condition is not true, 

but the elif condition is true, so we print to screen that "a and b 

are equal". 

 

Else 

The else keyword catches anything which isn't caught by the 

preceding conditions. 

Example 

a = 200 
b = 33 
if b > a: 
  print("b is greater than a") 
elif a == b: 
  print("a and b are equal") 
else: 
  print("a is greater than b") 

 

In this example a is greater than b, so the first condition is not 

true, also the elif condition is not true, so we go to 

the else condition and print to screen that "a is greater than b". 

You can also have an else without the elif: 

Example 



a = 200 
b = 33 
if b > a: 
  print("b is greater than a") 
else: 
  print("b is not greater than a") 

 

 

Short Hand If 

If you have only one statement to execute, you can put it on the 

same line as the if statement. 

Example 

One line if statement: 

if a > b: print("a is greater than b") 

 

 

Short Hand If ... Else 

If you have only one statement to execute, one for if, and one for 

else, you can put it all on the same line: 

Example 

One line if else statement: 

a = 2 
b = 330 
print("A") if a > b else print("B") 

 



This technique is known as Ternary Operators, or Conditional 

Expressions. 

You can also have multiple else statements on the same line: 

Example 

One line if else statement, with 3 conditions: 

a = 330 
b = 330 
print("A") if a > b else print("=") if a == b else print("B") 

 

And 

The and keyword is a logical operator, and is used to combine 

conditional statements: 

Example 

Test if a is greater than b, AND if c is greater than a: 

a = 200 
b = 33 
c = 500 
if a > b and c > a: 
  print("Both conditions are True") 
 

Or 

The or keyword is a logical operator, and is used to combine 

conditional statements: 

Example 

Test if a is greater than b, OR if a is greater than c: 



a = 200 
b = 33 
c = 500 
if a > b or a > c: 
  print("At least one of the conditions is True") 
 

 

Nested If 

You can have if statements inside if statements, this is 

called nested if statements. 

Example 

x = 41 
 
if x > 10: 
  print("Above ten,") 
  if x > 20: 
    print("and also above 20!") 
  else: 
    print("but not above 20.") 

 

The pass Statement 

if statements cannot be empty, but if you for some reason have 

an if statement with no content, put in the pass statement to 

avoid getting an error. 

Example 

a = 33 
b = 200 
 
if b > a: 
  pass 



Python While Loops 

❮ PreviousNext ❮ 

 

Python Loops 

Python has two primitive loop commands: 

 while loops 

 for loops 

 

The while Loop 

With the while loop we can execute a set of statements as long as 

a condition is true. 

Example 

Print i as long as i is less than 6: 

i = 1 
while i < 6: 
  print(i) 
  i += 1 
 

Note: remember to increment i, or else the loop will continue 

forever. 

The while loop requires relevant variables to be ready, in this 

example we need to define an indexing variable, i, which we set 

to 1. 

 

The break Statement 

https://www.w3schools.com/python/python_conditions.asp
https://www.w3schools.com/python/python_conditions.asp


With the break statement we can stop the loop even if the while 

condition is true: 

Example 

Exit the loop when i is 3: 

i = 1 
while i < 6: 
  print(i) 
  if i == 3: 
    break 
  i += 1 

 

 

The continue Statement 

With the continue statement we can stop the current iteration, 

and continue with the next: 

Example 

Continue to the next iteration if i is 3: 

i = 0 
while i < 6: 
  i += 1 
  if i == 3: 
    continue 
  print(i) 
 

 

 

The else Statement 



With the else statement we can run a block of code once when 

the condition no longer is true: 

Example 

Print a message once the condition is false: 

i = 1 
while i < 6: 
  print(i) 
  i += 1 
else: 
  print("i is no longer less than 6") 
 

 

Python For Loops 

❮ PreviousNext ❮ 

A for loop is used for iterating over a sequence (that is either a 

list, a tuple, a dictionary, a set, or a string). 

This is less like the for keyword in other programming languages, 

and works more like an iterator method as found in other object-

orientated programming languages. 

With the for loop we can execute a set of statements, once for 

each item in a list, tuple, set etc. 

Example 

Print each fruit in a fruit list: 

fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  print(x) 

The for loop does not require an indexing variable to set 

beforehand. 

https://www.w3schools.com/python/python_while_loops.asp
https://www.w3schools.com/python/python_while_loops.asp


 

Looping Through a String 

Even strings are iterable objects, they contain a sequence of 

characters: 

Example 

Loop through the letters in the word "banana": 

for x in "banana": 
  print(x) 

The break Statement 

With the break statement we can stop the loop before it has 

looped through all the items: 

Example 

Exit the loop when x is "banana": 

fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  print(x) 
  if x == "banana": 
    break 

 

Example 

Exit the loop when x is "banana", but this time the break comes 

before the print: 

fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  if x == "banana": 
    break 
  print(x) 



 

The continue Statement 

With the continue statement we can stop the current iteration of 

the loop, and continue with the next: 

Example 

Do not print banana: 

fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  if x == "banana": 
    continue 
  print(x) 

Try it Yourself » 

 

The range() Function 

To loop through a set of code a specified number of times, we can 

use the range() function, 

The range() function returns a sequence of numbers, starting 

from 0 by default, and increments by 1 (by default), and ends at a 

specified number. 

Example 

Using the range() function: 

for x in range(6): 
  print(x) 

Try it Yourself » 

Note that range(6) is not the values of 0 to 6, but the values 0 to 

5. 

https://www.w3schools.com/python/trypython.asp?filename=demo_for_continue
https://www.w3schools.com/python/trypython.asp?filename=demo_for_range


The range() function defaults to 0 as a starting value, however it 

is possible to specify the starting value by adding a 

parameter: range(2, 6), which means values from 2 to 6 (but not 

including 6): 

Example 

Using the start parameter: 

for x in range(2, 6): 
  print(x) 

The range() function defaults to increment the sequence by 1, 

however it is possible to specify the increment value by adding a 

third parameter: range(2, 30, 3): 

Example 

Increment the sequence with 3 (default is 1): 

for x in range(2, 30, 3): 
  print(x) 

 

Else in For Loop 

The else keyword in a for loop specifies a block of code to be 

executed when the loop is finished: 

Example 

Print all numbers from 0 to 5, and print a message when the loop 

has ended: 

for x in range(6): 
  print(x) 
else: 
  print("Finally finished!") 



 

Nested Loops 

A nested loop is a loop inside a loop. 

The "inner loop" will be executed one time for each iteration of the 

"outer loop": 

Example 

Print each adjective for every fruit: 

adj = ["red", "big", "tasty"] 
fruits = ["apple", "banana", "cherry"] 
 
for x in adj: 
  for y in fruits: 
    print(x, y) 

 

The pass Statement 

for loops cannot be empty, but if you for some reason have 

a for loop with no content, put in the pass statement to avoid 

getting an error. 

Example 

for x in [0, 1, 2]: 
  pass 

 

 

Python File Open 

❮ PreviousNext ❮ 

https://www.w3schools.com/python/python_string_formatting.asp
https://www.w3schools.com/python/python_string_formatting.asp


 

File handling is an important part of any web application. 

Python has several functions for creating, reading, updating, and 

deleting files. 

 

File Handling 

The key function for working with files in Python is 

the open() function. 

The open() function takes two parameters; filename, and mode. 

There are four different methods (modes) for opening a file: 

"r" - Read - Default value. Opens a file for reading, error if the file 

does not exist 

"a" - Append - Opens a file for appending, creates the file if it 

does not exist 

"w" - Write - Opens a file for writing, creates the file if it does not 

exist 

"x" - Create - Creates the specified file, returns an error if the file 

exists 

In addition you can specify if the file should be handled as binary 

or text mode 

"t" - Text - Default value. Text mode 

"b" - Binary - Binary mode (e.g. images) 

 

Syntax 



To open a file for reading it is enough to specify the name of the 

file: 

f = open("demofile.txt") 

The code above is the same as: 

f = open("demofile.txt", "rt") 

Because "r" for read, and "t" for text are the default values, you 

do not need to specify them. 

Python File Open 

Open a File on the Server 

Assume we have the following file, located in the same folder as 

Python: 

demofile.txt 

Hello! Welcome to demofile.txt 
This file is for testing purposes. 
Good Luck! 

To open the file, use the built-in open() function. 

The open() function returns a file object, which has 

a read() method for reading the content of the file: 

Example 

f = open("demofile.txt", "r") 
print(f.read()) 

Run Example » 

If the file is located in a different location, you will have to specify 

the file path, like this: 

Example 

https://www.w3schools.com/python/showpython.asp?filename=demo_file_open


Open a file on a different location: 

f = open("D:\\myfiles\welcome.txt", "r") 
print(f.read()) 

Run Example » 

 

Read Only Parts of the File 

By default the read() method returns the whole text, but you can 

also specify how many characters you want to return: 

Example 

Return the 5 first characters of the file: 

f = open("demofile.txt", "r") 
print(f.read(5)) 

 

 

Python File Write 

❮ PreviousNext ❮ 

Write to an Existing File 

To write to an existing file, you must add a parameter to 

the open() function: 

"a" - Append - will append to the end of the file 

"w" - Write - will overwrite any existing content 

Example 

Open the file "demofile2.txt" and append content to the file: 

https://www.w3schools.com/python/showpython.asp?filename=demo_file_open_d
https://www.w3schools.com/python/python_file_open.asp
https://www.w3schools.com/python/python_file_open.asp


f = open("demofile2.txt", "a") 
f.write("Now the file has more content!") 
f.close() 
 
#open and read the file after the appending: 
f = open("demofile2.txt", "r") 
print(f.read()) 

 

Example 

Open the file "demofile3.txt" and overwrite the content: 

f = open("demofile3.txt", "w") 
f.write("Woops! I have deleted the content!") 
f.close() 
 
#open and read the file after the appending: 
f = open("demofile3.txt", "r") 
print(f.read()) 

Note: the "w" method will overwrite the entire file. 

 

Create a New File 

To create a new file in Python, use the open() method, with one of 

the following parameters: 

"x" - Create - will create a file, returns an error if the file exist 

"a" - Append - will create a file if the specified file does not exist 

"w" - Write - will create a file if the specified file does not exist 

Example 

Create a file called "myfile.txt": 

f = open("myfile.txt", "x") 



Result: a new empty file is created! 

Example 

Create a new file if it does not exist: 

f = open("myfile.txt", "w") 

 

 

Python Delete File 

 

Delete a File 

To delete a file, you must import the OS module, and run 

its os.remove() function: 

Example 

Remove the file "demofile.txt": 

import os 
os.remove("demofile.txt") 

 

Check if File exist: 

To avoid getting an error, you might want to check if the file 

exists before you try to delete it: 

Example 

Check if file exists, then delete it: 

import os 
if os.path.exists("demofile.txt"): 



  os.remove("demofile.txt") 
else: 
  print("The file does not exist") 

 

Delete Folder 

To delete an entire folder, use the os.rmdir() method: 

Example 

Remove the folder "myfolder": 

import os 
os.rmdir("myfolder") 

 

 

 

 

Errors and Exceptions 

Python Try Except 

 

The try block lets you test a block of code for errors. 

The except block lets you handle the error. 

The finally block lets you execute code, regardless of the result 

of the try- and except blocks. 

 

Exception Handling 



When an error occurs, or exception as we call it, Python will 

normally stop and generate an error message. 

These exceptions can be handled using the try statement: 

Example 

The try block will generate an exception, because x is not defined: 

try: 
  print(x) 
except: 
  print("An exception occurred") 

Since the try block raises an error, the except block will be 

executed. 

Without the try block, the program will crash and raise an error: 

Example 

This statement will raise an error, because x is not defined: 

print(x) 

 

Many Exceptions 

You can define as many exception blocks as you want, e.g. if you 

want to execute a special block of code for a special kind of error: 

Example 

Print one message if the try block raises a NameError and another 

for other errors: 

try: 
  print(x) 
except NameError: 
  print("Variable x is not defined") 



except: 
  print("Something else went wrong") 

 

 

Else 

You can use the else keyword to define a block of code to be 

executed if no errors were raised: 

Example 

In this example, the try block does not generate any error: 

try: 
  print("Hello") 
except: 
  print("Something went wrong") 
else: 
  print("Nothing went wrong") 

 

Finally 

The finally block, if specified, will be executed regardless if the 

try block raises an error or not. 

Example 

try: 
  print(x) 
except: 
  print("Something went wrong") 
finally: 
  print("The 'try except' is finished") 



This can be useful to close objects and clean up resources: 

Example 

Try to open and write to a file that is not writable: 

try: 
  f = open("demofile.txt") 
  f.write("Lorum Ipsum") 
except: 
  print("Something went wrong when writing to the file") 
finally: 
  f.close() 

The program can continue, without leaving the file object open. 

 

Raise an exception 

As a Python developer you can choose to throw an exception if a 

condition occurs. 

To throw (or raise) an exception, use the raise keyword. 

Example 

Raise an error and stop the program if x is lower than 0: 

x = -1 
 
if x < 0: 
  raise Exception("Sorry, no numbers below zero") 

The raise keyword is used to raise an exception. 

You can define what kind of error to raise, and the text to print to 

the user. 

Example 



Raise a TypeError if x is not an integer: 

x = "hello" 
 
if not type(x) is int: 
  raise TypeError("Only integers are allowed") 

Python Functions 

A function is a block of code which only runs when it is called. 

You can pass data, known as parameters, into a function. 

A function can return data as a result. 

 

Creating a Function 

In Python a function is defined using the def keyword: 

Example 

def my_function(): 
  print("Hello from a function") 

 

Calling a Function 

To call a function, use the function name followed by parenthesis: 

Example 

def my_function(): 
  print("Hello from a function") 
 
my_function() 

 



Arguments 

Information can be passed into functions as arguments. 

Arguments are specified after the function name, inside the 

parentheses. You can add as many arguments as you want, just 

separate them with a comma. 

The following example has a function with one argument (fname). 

When the function is called, we pass along a first name, which is 

used inside the function to print the full name: 

Example 

def my_function(fname): 
  print(fname + " Refsnes") 
 
my_function("Emil") 
my_function("Tobias") 
my_function("Linus") 

Arguments are often shortened to args in Python documentations. 

 

 

Parameters or Arguments? 

The terms parameter and argument can be used for the same 

thing: information that are passed into a function. 

From a function's perspective: 

A parameter is the variable listed inside the parentheses in the 

function definition. 

An argument is the value that is sent to the function when it is 

called. 

 



Number of Arguments 

By default, a function must be called with the correct number of 

arguments. Meaning that if your function expects 2 arguments, 

you have to call the function with 2 arguments, not more, and not 

less. 

Example 

This function expects 2 arguments, and gets 2 arguments: 

def my_function(fname, lname): 
  print(fname + " " + lname) 
 
my_function("Emil", "Refsnes") 

 

If you try to call the function with 1 or 3 arguments, you will get 

an error: 

Example 

This function expects 2 arguments, but gets only 1: 

def my_function(fname, lname): 
  print(fname + " " + lname) 
 
my_function("Emil") 

 

Arbitrary Arguments, *args 

If you do not know how many arguments that will be passed into 

your function, add a * before the parameter name in the function 

definition. 

This way the function will receive a tuple of arguments, and can 

access the items accordingly: 

Example 



If the number of arguments is unknown, add a * before the 

parameter name: 

def my_function(*kids): 
  print("The youngest child is " + kids[2]) 
 
my_function("Emil", "Tobias", "Linus") 

Try it Yourself » 

Arbitrary Arguments are often shortened to *args in Python 

documentations. 

 

Keyword Arguments 

You can also send arguments with the key = value syntax. 

This way the order of the arguments does not matter. 

Example 

def my_function(child3, child2, child1): 
  print("The youngest child is " + child3) 
 
my_function(child1 = "Emil", child2 = "Tobias", child3 
= "Linus") 

 

The phrase Keyword Arguments are often shortened to kwargs in 

Python documentations. 

 

Arbitrary Keyword Arguments, **kwargs 

If you do not know how many keyword arguments that will be 

passed into your function, add two asterisk: ** before the 

parameter name in the function definition. 

https://www.w3schools.com/python/trypython.asp?filename=demo_function_args


This way the function will receive a dictionary of arguments, and 

can access the items accordingly: 

Example 

If the number of keyword arguments is unknown, add a 

double ** before the parameter name: 

def my_function(**kid): 
  print("His last name is " + kid["lname"]) 
 
my_function(fname = "Tobias", lname = "Refsnes") 

 

Arbitrary Kword Arguments are often shortened to **kwargs in 

Python documentations. 

 

Default Parameter Value 

The following example shows how to use a default parameter 

value. 

If we call the function without argument, it uses the default value: 

Example 

def my_function(country = "Norway"): 
  print("I am from " + country) 
 
my_function("Sweden") 
my_function("India") 
my_function() 
my_function("Brazil") 

 

Passing a List as an Argument 



You can send any data types of argument to a function (string, 

number, list, dictionary etc.), and it will be treated as the same 

data type inside the function. 

E.g. if you send a List as an argument, it will still be a List when it 

reaches the function: 

Example 

def my_function(food): 
  for x in food: 
    print(x) 
 
fruits = ["apple", "banana", "cherry"] 
 
my_function(fruits) 

 

 

Return Values 

To let a function return a value, use the return statement: 

Example 

def my_function(x): 
  return 5 * x 
 
print(my_function(3)) 
print(my_function(5)) 
print(my_function(9)) 

Try it Yourself » 

 

The pass Statement 

https://www.w3schools.com/python/trypython.asp?filename=demo_function_return


function definitions cannot be empty, but if you for some reason 

have a function definition with no content, put in 

the pass statement to avoid getting an error. 

Example 

def myfunction(): 
  pass 

Recursion 

Python also accepts function recursion, which means a defined 

function can call itself. 

Recursion is a common mathematical and programming concept. 

It means that a function calls itself. This has the benefit of 

meaning that you can loop through data to reach a result. 

The developer should be very careful with recursion as it can be 

quite easy to slip into writing a function which never terminates, 

or one that uses excess amounts of memory or processor power. 

However, when written correctly recursion can be a very efficient 

and mathematically-elegant approach to programming. 

In this example, tri_recursion() is a function that we have 

defined to call itself ("recurse"). We use the k variable as the data, 

which decrements (-1) every time we recurse. The recursion ends 

when the condition is not greater than 0 (i.e. when it is 0). 

To a new developer it can take some time to work out how exactly 

this works, best way to find out is by testing and modifying it. 

Example 

Recursion Example 

def tri_recursion(k): 
  if(k > 0): 
    result = k + tri_recursion(k - 1) 
    print(result) 



  else: 
    result = 0 
  return result 
 
print("\n\nRecursion Example Results") 
tri_recursion(6) 

Python Modules 

❮ PreviousNext ❮ 

 

What is a Module? 

Consider a module to be the same as a code library. 

A file containing a set of functions you want to include in your 

application. 

 

Create a Module 

To create a module just save the code you want in a file with the 

file extension .py: 

Example 

Save this code in a file named mymodule.py 

def greeting(name): 
  print("Hello, " + name) 

Use a Module 

Now we can use the module we just created, by using 

the import statement: 

Example 

https://www.w3schools.com/python/python_scope.asp
https://www.w3schools.com/python/python_scope.asp


Import the module named mymodule, and call the greeting 

function: 

import mymodule 
 
mymodule.greeting("Jonathan") 

Note: When using a function from a module, use the 

syntax: module_name.function_name. 

 

Variables in Module 

The module can contain functions, as already described, but also 

variables of all types (arrays, dictionaries, objects etc): 

Example 

Save this code in the file mymodule.py 

person1 = { 
  "name": "John", 
  "age": 36, 
  "country": "Norway" 
} 

Example 

Import the module named mymodule, and access the person1 

dictionary: 

import mymodule 
 
a = mymodule.person1["age"] 
print(a) 

 

 



Naming a Module 

You can name the module file whatever you like, but it must have 

the file extension .py 

Re-naming a Module 

You can create an alias when you import a module, by using 

the as keyword: 

Example 

Create an alias for mymodule called mx: 

import mymodule as mx 
 
a = mx.person1["age"] 
print(a) 

 

Built-in Modules 

There are several built-in modules in Python, which you can 

import whenever you like. 

Example 

Import and use the platform module: 

import platform 
 
x = platform.system() 
print(x) 

 

Using the dir() Function 



There is a built-in function to list all the function names (or 

variable names) in a module. The dir() function: 

Example 

List all the defined names belonging to the platform module: 

import platform 
 
x = dir(platform) 
print(x) 

Note: The dir() function can be used on all modules, also the ones 

you create yourself. 

 

Import From Module 

You can choose to import only parts from a module, by using 

the from keyword. 

Example 

The module named mymodule has one function and one dictionary: 

def greeting(name): 
  print("Hello, " + name) 
 
person1 = { 
  "name": "John", 
  "age": 36, 
  "country": "Norway" 
} 
 

Example 

Import only the person1 dictionary from the module: 



from mymodule import person1 
 
print (person1["age"]) 

Python Classes and Objects 

❮ PreviousNext ❮ 

 

Python Classes/Objects 

Python is an object oriented programming language. 

Almost everything in Python is an object, with its properties and 

methods. 

A Class is like an object constructor, or a "blueprint" for creating 

objects. 

 

Create a Class 

To create a class, use the keyword class: 

Example 

Create a class named MyClass, with a property named x: 

class MyClass: 
  x = 5 

 

Create Object 

Now we can use the class named MyClass to create objects: 

Example 

https://www.w3schools.com/python/python_arrays.asp
https://www.w3schools.com/python/python_arrays.asp


Create an object named p1, and print the value of x: 

p1 = MyClass() 
print(p1.x) 

 

The __init__() Function 

The examples above are classes and objects in their simplest 

form, and are not really useful in real life applications. 

To understand the meaning of classes we have to understand the 

built-in __init__() function. 

All classes have a function called __init__(), which is always 

executed when the class is being initiated. 

Use the __init__() function to assign values to object properties, 

or other operations that are necessary to do when the object is 

being created: 

Example 

Create a class named Person, use the __init__() function to assign 

values for name and age: 

class Person: 
  def __init__(self, name, age): 
    self.name = name 
    self.age = age 
 
p1 = Person("John", 36) 
 
print(p1.name) 
print(p1.age) 

 

Note: The __init__() function is called automatically every time 

the class is being used to create a new object. 



 

 

Object Methods 

Objects can also contain methods. Methods in objects are 

functions that belong to the object. 

Let us create a method in the Person class: 

Example 

Insert a function that prints a greeting, and execute it on the p1 

object: 

class Person: 
  def __init__(self, name, age): 
    self.name = name 
    self.age = age 
 
  def myfunc(self): 
    print("Hello my name is " + self.name) 
 
p1 = Person("John", 36) 
p1.myfunc() 

 

Note: The self parameter is a reference to the current instance of 

the class, and is used to access variables that belong to the class. 

 

The self Parameter 

The self parameter is a reference to the current instance of the 

class, and is used to access variables that belongs to the class. 



It does not have to be named self , you can call it whatever you 

like, but it has to be the first parameter of any function in the 

class: 

Example 

Use the words mysillyobject and abc instead of self: 

class Person: 
  def __init__(mysillyobject, name, age): 
    mysillyobject.name = name 
    mysillyobject.age = age 
 
  def myfunc(abc): 
    print("Hello my name is " + abc.name) 
 
p1 = Person("John", 36) 
p1.myfunc() 

 

Modify Object Properties 

You can modify properties on objects like this: 

Example 

Set the age of p1 to 40: 

p1.age = 40 

 

Delete Object Properties 

You can delete properties on objects by using the del keyword: 

Example 

Delete the age property from the p1 object: 



del p1.age 

Delete Objects 

You can delete objects by using the del keyword: 

Example 

Delete the p1 object: 

del p1 

 

The pass Statement 

class definitions cannot be empty, but if you for some reason 

have a class definition with no content, put in the pass statement 

to avoid getting an error. 

Example 

class Person: 
  pass 

 


	What is Perl?
	Programming in Perl:
	Design
	Implementation
	 Perl is implemented as a core interpreter, written in C,together with a large collection of  modules, written in Perl and C.
	 The interpreter has an object-oriented architecture. All of the elements
	Availability
	Optimizing
	 Because Perl is an interpreted language, it can give problems when   efficiency is critical; in such situations, the most critical routines can be written in other languages �猀甀挀栀 愀猀 䌀, which can be connected to Perl via simple In line modules or t...

	Logical operators:
	Flow Diagram:
	Syntax:
	Ifexpression
	{ statement1;
	Statement2;…
	}
	Example:
	Syntax
	Example:

	Flow Diagram:
	Loops
	 for loop
	 foreach loop
	 while loop
	 do…. while loop
	 until loop
	 Nested loops
	for Loop
	“for” loop provides a concise way of writing the loop structure. A for statement consumes the initialization, condition and increment/decrement in one line thereby providing a shorter,
	foreach Loop
	while Loop
	do…. while loop
	until loop
	Nested Loops
	Define and Call a Subroutine
	Passing Arguments to a Subroutine
	Passing Lists to Subroutines
	Passing Hashes to Subroutines
	Returning Value from a Subroutine
	Private Variables in a Subroutine

	What are Packages?
	BEGIN and END Blocks
	What are Perl Modules?
	Perl module example
	The Require Function:
	The Use Function:
	Modules in different directory



