
INTRODUCTION TO C#

C# is a multi-paradigm programming language encompassing strong typing,

imperative, declarative, functional, generic, object-oriented (class-based), and

component-oriented programming disciplines.

It was developed by Microsoft within its .NET initiative and later approved as a

standard by European Computer Manufactures Association (ECMA-334) and

International Organization for Standardization/ International Electrotechnical

Commison(ISO/IEC 23270:2006).

C# is a general-purpose, Object-Oriented Programming Language and web enabled

programming language.

Its development team is led by Anders Hejlsberg and Scott Wiltamuth.

The most recent version is C# 9.0, which was released in November 10 2020 along

with Visual Studio 2019 version 16.8 and .Net Framework version 5.0.

History of C#

During the development of the .NET Framework, the class libraries were originally

written using a managed code compiler system called Simple Managed C (SMC).

In January 1999, Anders Hejlsberg formed a team to build a new language at the time

called Cool, which stood for "C-like Object Oriented Language".

Microsoft had considered keeping the name "Cool" as the final name of the language,

but chose not to do so for trademark reasons. By the time the .NET project was publicly

announced at the July 2000 Professional Developers Conference, the language had

been renamed C#, and the class libraries and ASP.NET runtime had been ported to

C#.

Hejlsberg is C#'s principal designer and lead architect at Microsoft, and was previously

involved with the design of Turbo Pascal, Embarcadero Delphi (formerly CodeGear

Delphi, Inprise Delphi and Borland Delphi), and Visual J++.

In interviews and technical papers he has stated that flaws in most major programming

languages (e.g. C++, Java, Delphi, and Smalltalk) drove the fundamentals of the

Common Language Runtime (CLR), which, in turn, drove the design of the C#

language itself.

Microsoft first used the name C# in 1988 for a variant of the C language designed for

incremental compilation. That project was not completed but the name lives on.

Why C#

C# is pronounced as "C-Sharp". It is an object-oriented programming language

provided by Microsoft that runs on .Net Framework.

By the help of C# programming language, we can develop different types of secured

and robust applications:

✓ Console Applications.

✓ Window applications.

✓ Web applications.

✓ Developing windows controls.

✓ Creating web controls.

✓ Distributed applications.

✓ Web service applications.

✓ Database applications etc.

C# is approved as a standard by European Computer Manufacturers Association

(ECMA) and International Standards Organization (ISO).

C# was developed by Anders Hejlsberg and his team during the development of .Net

Framework. C# is designed for Common Language Infrastructure (CLI), which

consists of the executable code and runtime environment that allows use of various

high-level languages on different computer platforms and architectures.

C# programming language is influenced by C++, Java, Eiffel, Modula-3, Pascal etc.

languages.

Strong Programming Features of C#

Although C# constructs closely follow traditional high-level languages, C and C++ and

being an object-oriented programming language. It has strong resemblance with Java,

it has numerous strong programming features that make it endearing to a number of

programmers worldwide.

Following is the list of few important features of C# −

✓ First component-oriented language in C/C++ family.

✓ Pure object orientation without compromising efficiency.

✓ Cross language interaction with Visual C++, Visual Basic and other .Net

enabled languages.

✓ Explicit support for unsafe code.

✓ Boxing and Unboxing

✓ Boolean Conditions

✓ Automatic Garbage Collection

✓ Standard Library

✓ Assembly Versioning

✓ Properties and Events

✓ Delegates and Events Management

✓ Indexers

✓ Simple Multithreading

✓ Integration with Windows

Characteristics of C#

The main design goal of C# was simplicity rather than pure power. C# fulfils the need

for a language that is easy to write, read and maintain and also provides the power

and flexibility of C++. The language that is designed for both computing and

communications is characterized by several key features.

It is

✓ Simple
✓ Object-oriented
✓ Compatible
✓ Consistent
✓ Type-safe
✓ Interoperable and
✓ Modern
✓ Versionable
✓ Flexible

Simple

C# simplifies C++ by eliminating irksome operators such as ->,:: and pointers. C#

treats integer and Boolean data types as two entirely different types. This means that

the use of = in place of = = in If statements will be caught by the compiler.

Consistent

C# supports an unified type system which eliminates the problem of varying ranges of

integer types. All types are treated as objects and developers can extend the type

system simply and easily.

Modern

C# is called a modern language due to a number of features it supports. It supports

✓ Automatic garbage collection

✓ Modem approach to debugging and

✓ Rich intrinsic model for error handling

✓ Robust security model

✓ Decimal data type for financial applications

Object-Oriented

C# is truly object-oriented. It supports all the three tenets of object-oriented systems,

namely, • Encapsulation • Inheritance • Polymorphism The entire C# class model is

built on top of the Virtual Object System (VOS) of the NET Framework In C#,

everything is an object. There are no more global functions, variables and constants.

Type-safe

Type-safety promotes robust programs. C# incorporates a number of type-safe
measures.

✓ All dynamically allocated objects and arrays are initialized to zero

✓ Use of any uninitialized variables produces an error message by the compiler

✓ Access to arrays are range-checked and warned if it goes out-of-bounds

✓ C# does not permit unsafe casts

✓ C# enforces overflow checking in arithmetic operations

✓ Reference parameters that are passed are type-safe

✓ C# supports automatic garbage collection

Versionable

Making new versions of software modules work with the existing applications is known

as versioning. C# provides support for versioning with the help of new and override

keywords. With this support, a programmer can guarantee that his new class library

will maintain binary compatibility with the existing client applications.

Flexible

Although C# does not support pointers, we may declare certain classes and methods

as 'unsafe' and then use pointers to manipulate them. However, these codes will not

be type-safe.

Inter-operability

C# provides support for using COM objects, no matter what language was used to

author them. C# also supports a special feature that enables a program to call out any

native API.

HOW DOES C# DIFFER FROM C++?

As stated earlier. C# was derived from C++ to make it the language of choice for C

and C++ programmers. C#, therefore, shares major parts of syntax with C++.

However, the C# designers introduced a few changes in the syntax of C++ and

removed a few features primarily to reduce the common pitfalls that occurred in C++

program development. They also added a number of additional features to make C#

a type-safe and web-enabled language.

Changes Introduced

✓ C# compiles straight from source code to executable code, with no object files.

✓ C# does not separate class definition from implementation. Classes are defined

and implemented in the same place and therefore there is no need for header

files.

✓ C# does not support #include statement. (Note that using is not the same as

#include). All data types in C# are inherited from the object superclass and

therefore they are objects.

✓ All the basic value types will have the same size on any system. This is not the

case in C or C++. Thus C# is more suitable for writing distributed applications.

✓ In C#, data types belong to either value types or reference types.

✓ C# checks for uninitialized variables and gives error messages at compile time.

In C++, an uninitialized variable goes undetected thus resulting in unpredictable

output.

✓ In C#, structs are value types.

✓ C# supports a native string type. Manipulation of strings is easy.

✓ C# supports a native Boolean data type and bool-type data cannot be implicitly

or explicitly cast to any data type except object.

✓ C# declares null as a keyword and considers it as an intrinsic value.

✓ C# does not support pointer types for manipulating data. However, they are

used in what is known as 'unsafe' code.

✓ Variable scope rules in C# are more restrictive. In C#, duplicating the same

name within a routine is illegal, even if it is in a separate code block.

✓ C# permits declaration of variables between goto and label.

✓ We can only create objects in C# using the new keyword.

✓ Arrays are classes in C# and therefore they have built-in functionality for

operations such as sorting, searching, and reversing.

✓ Arrays in C# are declared differently and behave very differently compared to

C++ arrays.

✓ C# provides special syntax to initialize arrays efficiently.

✓ Arrays in C# are always reference types rather than value types, as they are in

C++ and therefore stored in a heap.

✓ In C#, expressions in if and while statements must resolve to a bool value.

Accidental use of the assignment operator (=) instead of equality operator = =

will be caught by the compiler.

✓ C# supports four iteration statements rather than three in C++ . The fourth one

is the foreach statement.

✓ C# does not allow silent fall-through in switch statements. It requires an explicit

jump statement at the end of each case statement.

✓ In C#, switch can also be used on string values.

✓ The set of operators that can be overloaded in C# is smaller compared to C++.

✓ C# can check overflow of arithmetic operations and conversions using checked

and unchecked keywords.

✓ C# does not support default arguments.

✓ Variable method parameters are handled differently in C#.

✓ In exception-handling, unlike in C++, we cannot throw any type in C#. The

thrown value has to be a reference to a derived class or System.Exception

object.

✓ C# requires ordering of catch blocks correctly.

✓ General catch statement catch (...) in C++ is replaced by simple catch in C#

✓ C# does not provide any defaults for constructors.

✓ Destructors in C# behave differently than in C++.

✓ In C#, we cannot access static members via an object, as we can in C++.

✓ C# does not support multiple code inheritance.

✓ Casting in C# is much safer than in C++.

✓ When overriding a virtual method, we must use the override keyword.

✓ Abstract methods in C# are similar to virtual functions in C++, but C# abstract

methods cannot have implementations.

✓ Command-line parameters array behave differently in C# as compared to C++.

C++ features dropped

The following C++ features are missing from C#:

✓ Macros

✓ Multiple inheritance

✓ Templates

✓ Pointers

✓ Global variables

✓ Typedef statement

✓ Default arguments

✓ Constant member functions or parameters.

Enhancements to C++

C# modernizes C++ by adding the following new features:

✓ Automatic garbage collection

✓ Versioning support

✓ Strict type-safety

✓ Properties to access data members

✓ Delegates and events

✓ Boxing and unboxing

✓ Web services

HOW DOES C# DIFFER FROM JAVA?

Like C#, Java was also derived from C++ and therefore they have similar roots.
Moreover, C# was developed by Microsoft as an alternative to Java for web
programming. C# has borrowed many good features from Java, which has already
become a popular Internet language. However, there exist a number of differences
between C# and Java:

✓ Although C# uses .NET runtime that is similar to Java runtime, the C# compiler

produces an executable code.

✓ C# has more primitive data types.

✓ Unlike Java, all C# data types are objects.

✓ Arrays are declared differently in C#.

✓ Although C# classes are quite similar to Java classes, there are a few important

differences relating to constants, base classes and constructors, static

constructors, versioning, accessibility of members etc.

✓ Java uses static final to declare a class constant while C# uses const.

✓ The convention for Java is to put one public class in each file and in fact, some

compilers require this. C# allows any source file arrangement.

✓ C# supports the struct type and Java does not.

✓ Java does not provide for operator overloading.

✓ In Java, class members are virtual by default and a method having the same

name in a derived class overrides the base class member. In C#, the base

member is required to have the virtual keyword and the derived member is

required to use the override keyword.

✓ The new modifier used for class members has no complement in Java.

✓ C# provides better versioning support than Java.

✓ C# provides static constructors for initialization.

✓ C# provides built-in delegates and events. Java uses interfaces and inner

classes to achieve a similar result.

✓ In Java, parameters are always passed by value. C# allows parameters to be

passed by reference by using the ref keyword.

✓ C# adds internal, a new accessibility modifier. Members with internal

accessibility can be accessed from other classes within the same project, but

not from outside the project.

✓ C# includes native support for properties, Java does not.

✓ Java does not directly support enumerations.

✓ Java does not have any equivalent to C# indexers.

✓ Both Java and C# support interfaces. But, C# does not allow type definitions in

interfaces, while Java interfaces can have const type data.

✓ In Java, the switch statement can have only integer expression, while C#

supports either an integer or string expressions.

✓ C# does not allow free fall_through from case to case.

✓ C# provides a fourth type of iteration statement, foreach for quick and easy

iterations over collections and array type data.

✓ Catch blocks should be ordered correctly in C#.

✓ C# checks overflows using checked statements.

✓ C# uses is operator instead of instanceof operator in Java.

✓ C# allows a variable number of parameters using the params keyword.

✓ There is no labeled break statement in C#. The goto is used to achieve this.

The .Net Framework

.Net Framework is a software development platform developed by Microsoft for
building and running Windows applications. The .Net framework consists of developer
tools, programming languages, and libraries to build desktop and web applications. It
is also used to build websites, web services, and games. The .Net framework
applications are multi-platform applications. The framework has been designed in such
a way that it can be used from any of the following languages: C#, C++, Visual Basic,
Jscript, COBOL, etc. All these languages can access the framework as well as
communicate with each other.

The .Net framework consists of an enormous library of codes used by the client
languages such as C#. Following is some of the components of the .Net framework −

✓ Common Language Runtime (CLR)
✓ The .Net Framework Class Library
✓ Common Language Specification
✓ Common Type System
✓ Metadata and Assemblies
✓ Windows Forms

✓ ASP.Net and ASP.Net AJAX
✓ ADO.Net
✓ Windows Workflow Foundation (WF)
✓ Windows Presentation Foundation
✓ Windows Communication Foundation (WCF)
✓ LINQ

Common Language Runtime (CLR)

The Common Language Runtime (CLR) is programming that manages the execution
of programs written in any of several supported languages, allowing them to share
common object-oriented classes written in any of the languages. It is a part of
Microsoft's .NET Framework. Microsoft refers to its CLR as a "managed execution
environment." A program compiled for the CLR does not need a language-specific
execution environment and can easily be moved to and run on any system with
Windows 2000 or Windows XP.

Programmers writing in Visual Basic, Visual C++, or C# compile their programs into
an intermediate form of code called Common Intermediate Language (CIL) in a
portable execution file that can then be managed and executed by the CLR. The
programmer and the environment specify descriptive information about the program
when it is compiled and the information is stored with the compiled program as
metadata. Metadata, stored in the compiled program, tells the CLR what language
was used, its version and what class libraries will be needed by the program. The CLR
allows an instance of a class written in one language to call a method of a class written
in another language. It also provides garbage collecting (returning unneeded memory
to the computer), exception handling and debugging services.

Following are the functions of the CLR.

✓ It converts the program into native code.
✓ Handles Exceptions
✓ Provides type-safety
✓ Memory management
✓ Provides security
✓ Improved performance
✓ Language independent
✓ Platform independent
✓ Garbage collection
✓ Provides language features such as inheritance, interfaces, and overloading for

object-oriented programming.

.NET CLR Structure

Following is the component structure of Common Language Runtime.

Base Class Library Support: It is a class library that provides support of classes to
the .NET application.

Thread Support: It manages the parallel execution of the multi-threaded application.

COM Marshaler: It provides communication between the COM objects and the
application.

Type Checker: It checks types used in the application and verifies that they match to
the standards provided by the CLR.

Code Manager: It manages code at execution run-time.

Garbage Collector: It releases the unused memory and allocates it to a new
application.

Exception Handler: It handles the exception at runtime to avoid application failure.

ClassLoader: It is used to load all classes at run time.

.NET Framework Class Library

.NET Framework Class Library is the collection of classes, namespaces, interfaces
and value types that are used for .NET applications.

It contains thousands of classes that supports the following functions.

✓ Base and user-defined data types
✓ Support for exceptions handling
✓ Input/output and stream operations
✓ Communications with the underlying system
✓ Access to data
✓ Ability to create Windows-based GUI applications
✓ Ability to create web-client and server applications
✓ Support for creating web services

.NET Framework Class Library Namespaces

Following is the commonly used namespaces that contains useful classes and
interfaces and defined in Framework Class Library.

Namespaces Description

System
It includes all common datatypes,
string values, arrays and methods
for data conversion.

System.Data, System.Data.Common,
System.Data.OleDb, System.Data.SqlClient,
System.Data.SqlTypes

These are used to access a
database, perform commands on
a database and retrieve database.

System.IO, System.DirectoryServices,
System.IO.IsolatedStorage

These are used to access, read
and write files.

System.Diagnostics
It is used to debug and trace the
execution of an application.

System.Net, System.Net.Sockets
These are used to communicate
over the Internet when creating
peer-to-peer applications.

System.Windows.Forms,
System.Windows.Forms.Design

These namespaces are used to
create Windows-based
applications using Windows user
interface components.

System.Web, System.WebCaching,
System.Web.UI, System.Web.UI.Design,
System.Web.UI.WebControls,
System.Web.UI.HtmlControls,
System.Web.Configuration,
System.Web.Hosting, System.Web.Mail,
System.Web.SessionState

These are used to create ASP.
NET Web applications that run
over the web.

System.Web.Services,
System.Web.Services.Description,
System.Web.Services.Configuration,
System.Web.Services.Discovery,
System.Web.Services.Protocols

These are used to create XML
Web services and components
that can be published over the
web.

System.Security, System.Security.Permissions,
System.Security.Policy, System.WebSecurity,
System.Security.Cryptography

These are used for authentication,
authorization, and encryption
purpose.

System.Xml, System.Xml.Schema,
System.Xml.Serialization, System.Xml.XPath,
System.Xml.Xsl

These namespaces are used to
create and access XML files.

.NET Framework Base Class Library

.NET Base Class Library is the sub part of the Framework that provides library
support to Common Language Runtime to work properly. It includes the System
namespace and core types of the .NET framework.

Common Language Specification

A Common Language Specification (CLS) is a document that says how computer
programs can be turned into Common Intermediate Language (CIL) code. When
several languages use the same bytecode, different parts of a program can be written
in different languages. Microsoft uses a Common Language Specification for their
.NET Framework. To fully interact with other objects regardless of the language they
were used in, objects must expose to callers only those features that are common to
all the languages they must exchange information with. It was always a dream of
Microsoft to unite all different languages into one umbrella and CLS is one step
towards that. Microsoft has defined CLS which are nothing but guidelines for
languages to follow so that it can communicate with other .NET languages in a
seamless manner.

Most of the members defined by types in the .NET Framework class library are able
to work with CLS. However, some types in the class library have one or more members
that are not able to work with CLS. These members allow support for language
features that are not in the CLS.

The CLS was designed to be large enough to include the language constructs that are
commonly needed by developers, yet small enough that most languages are able to
support it. Any language construct that makes it impossible to quickly confirm the type
safety of code was excluded from the CLS so that all languages that can work with
CLS can produce verifiable code if they choose to do so.

Common Type System (CTS)

The Common Type System (CTS) standardizes the data types of all programming
languages using .NET under the umbrella of .NET to a common data type for easy
and smooth communication among these .NET languages. For example, when we
declare an int type data type in C# and VB.Net then they are converted to int32. In
other words, now both will have a common data type that provides flexible
communication between these two languages.

 CTS is designed as a singly rooted object hierarchy with System.Object as the base
type from which all other types are derived. CTS supports two different kinds of types:

1. Value Types: Contain the values that need to be stored directly on the stack or
allocated inline in a structure. They can be built-in (standard primitive types),
user-defined (defined in source code) or enumerations (sets of enumerated
values that are represented by labels but stored as a numeric type).

2. Reference Types: Store a reference to the value‘s memory address and are
allocated on the heap. Reference types can be any of the pointer types,
interface types or self-describing types (arrays and class types such as user-
defined classes, boxed value types and delegates).

Although operations on variables of a value type do not affect any other variable,
operations on variables of a reference type can affect the same object referred to by
another variable. When references are made within the scope of an assembly, two
types with the same name but in different assemblies are defined as two distinct types,
whereas when using namespaces, the run time recognizes the full name of each type
(such as System.Object, System.String, etc.). The rich set of types in CTS has well-
designed semantics such that they can be widely used as a base type in Common
Language Runtime (CLR) -based languages.

C# Version History

C# was first introduced with .NET Framework 1.0 in the year 2002 and evolved much
since then. The following table lists important features introduced in each version of
C#:

Version .NET Framework Visual Studio Important Features

C# 1.0
.NET Framework
1.0/1.1

Visual Studio
.NET 2002 • Basic features

C# 2.0 .NET Framework
2.0

Visual Studio
2005

• Generics
• Partial types
• Anonymous methods

Version .NET Framework Visual Studio Important Features

• Iterators
• Nullable types
• Private setters (properties)
• Method group conversions

(delegates)
• Covariance and Contra-

variance
• Static classes

C# 3.0 .NET Framework
3.0\3.5

Visual Studio
2008

• Implicitly typed local
variables

• Object and collection
initializers

• Auto-Implemented
properties

• Anonymous types
• Extension methods
• Query expressions
• Lambda expressions
• Expression trees
• Partial Methods

C# 4.0 .NET Framework
4.0

Visual Studio
2010

• Dynamic binding (late
binding)

• Named and optional
arguments

• Generic co- and
contravariance

• Embedded interop types

C# 5.0
.NET Framework
4.5

Visual Studio
2012/2013

• Async features
• Caller information

C# 6.0
.NET Framework
4.6

Visual Studio
2013/2015

• Expression Bodied Methods
• Auto-property initializer
• nameof Expression
• Primary constructor
• Await in catch block
• Exception Filter
• String Interpolation

C# 7.0 .NET Core 2.0
Visual Studio
2017

• out variables
• Tuples
• Discards
• Pattern Matching
• Local functions
• Generalized async return

types

C# 8.0 .NET Core 3.0
Visual Studio
2019

• Readonly members
• Default interface methods
• Using declarations
• Static local functions

Version .NET Framework Visual Studio Important Features

• Disposable ref structs
• Nullable reference types

WinForms
Windows Forms is a smart client technology for the .NET Framework, a set of
managed libraries that simplify common application tasks such as reading and writing
to the file system.

ASP.NET
ASP.NET is a web framework designed and developed by Microsoft. It is used to
develop websites, web applications, and web services. It provides a fantastic
integration of HTML, CSS, and JavaScript. It was first released in January 2002.

ADO.NET
ADO.NET is a module of .Net Framework, which is used to establish a connection
between application and data sources. Data sources can be such as SQL Server and
XML. ADO .NET consists of classes that can be used to connect, retrieve, insert, and
delete data.

WPF (Windows Presentation Foundation)
Windows Presentation Foundation (WPF) is a graphical subsystem by Microsoft for
rendering user interfaces in Windows-based applications. WPF, previously known as
"Avalon", was initially released as part of .NET Framework 3.0 in 2006. WPF uses
DirectX.

WCF (Windows Communication Foundation)
It is a framework for building service-oriented applications. Using WCF, you can send
data as asynchronous messages from one service endpoint to another.

WF (Workflow Foundation)
Windows Workflow Foundation (WF) is a Microsoft technology that provides an API,
an in-process workflow engine, and a rehostable designer to implement long-running
processes as workflows within .NET applications.

LINQ (Language Integrated Query)
It is a query language, introduced in .NET 3.5 framework. It is used to make the query
for data sources with C# or Visual Basics programming languages.

Entity Framework
It is an ORM based open-source framework which is used to work with a database
using .NET objects. It eliminates a lot of developer’s effort to handle the database. It
is Microsoft's recommended technology to deal with the database.

OVERVIEW OF C#

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

17-06-2021

Overview of C#

➢ C# can be used to develop two categories of programs,

namely,

✓ Executable application programs and

✓ Component libraries as illustrated in Fig. 3.1.

➢ Executable programs are written to carry out certain tasks

and require the method Main in one of the classes.

➢ In contrast, component libraries do not require a Main

declaration because they are not standalone application

programs. They are written for use by other applications.

➢ This concept is something similar to applets and application

programs in Java.

2

Main()
3

 Every C# executable program must include the Main() method in one of the classes.
This is the 'starting point' for executing the program.

 A C# application can have any number of classes but 'only one' class can have the
Main method to initiate the execution.

 Main() contains a number of keywords: public, static and void.

 public : The keyword public is an access modifier that tells the C# compiler that the
Main method is accessible by anyone

 static: The keyword static declares that the Main method is a global one and can be
called without creating an instance of the class. The compiler stores the address of
the method as the entry point and uses this information to begin execution before
any objects are created.

 void: The keyword void is a type modifier that states that the Main method does not
return any value.

4

Creating and Running C# Program
5

 Generally, the programs created using programming languages like C, C++, Java,C#

etc., are written using a high-level language like English. But, the computer cannot

understand the high-level language. It can understand only low-level language. So, the

program written in the high-level language needs to be converted into the low-level

language to make it understandable for the computer. This conversion is performed

using either Interpreter or Compiler.

 Popular programming languages like C, C++, Java,C# etc., use the compiler to convert

high-level language instructions into low-level language instructions.

 A compiler is a program that converts high-level language instructions into low-level

language instructions. Generally, the compiler performs two things, first it verifies the

program errors, if errors are found, it returns a list of errors otherwise it converts the

complete code into the low-level language.

Stages of Compilation
6

Namespace
7

 A namespace is a declarative region that provides a scope to the
identifiers (the names of types, functions, variables, etc) inside it.

 Namespaces are used to organize code into logical groups and to
prevent name collisions that can occur especially when your code
base includes multiple libraries.

 The namespaces in C# can be nested. That means one namespace
can contain other namespaces also.

 The .NET framework already contains number of standard
namespaces like System, System.Net, System.IO etc. In addition to
these standard namespaces the user can define their own
namespaces.

8

Comments
9

 Comments are used to provide a small description of the program.

 The main reason for developers to write comments is to clarify or
explain some part of the code.

 The comment lines are simply ignored by the compiler, that means
they are not executed.

 In C#, there are two types of comments.

 Single Line Comments: Single line comment begins with // symbol. We
can write any number of single line comments.

 Multiple Lines Comments: Multiple lines comment begins with /* symbol
and ends with */. We can write any number of multiple lines comments
in a program.

10

USING ALIASES FOR NAMESPACE CLASSES
11

12

13

Character Sets
14

 The set of characters used in a language is known as its Character sets.

 The characters of the character set must be represented in the memory of
computers.

 The representation of a character in computer memory is known as Character
Encoding.

 Different character encoding methods are available as standards.(ASCII, EBCDIC,
ISO LATIN-1,Unicode)

 Unicode is a universal encoded character set that allows you to store information
from any language using a single character set.

 It provides a unique code value for every character, regardless of the platform,
program, or language.

 The character set for C# is taken from the Unicode encoding standard.

 C# Character sets supports Unicode Transformation Format -16 (UTF-16) encoding
standard.

15

 A subset of Character set of C#.

Upper Case Alphabets A-Z

Lower case Alphabets a-z

Decimal Digits 0-9

Special Characters + - * / % = < > _ Blank : ; , . ‘ “ ? ! # \ () [] { } & |
^ ~

16

Tokens
17

 Token is an individual entity of a program. A compiler identifies and splits a
program into a number of tokens. A token may be a single character or a group of
characters which has a specific meaning according to its syntax. The following are
the tokens can be identified by a C# Compiler during the translation process.

 Identifiers

 Keywords

 Constants or Literals

 Operators

 Punctuators.

 For example, Consider the C# statement (if income >= 10000)

 where if is a keyword Followed by (operator, Income is a variable followed by >=
is an operator and finally 10000 is a numeric constant.

C# Tokens
18

 C# program is a collection of instructions and every instruction is a collection of some individual units.

Every smallest individual unit of a C# program is called tokens. Tokens are used to construct C#

programs and they are said to the basic building blocks of a C# program.

 In a C# program tokens may contain the following...

 Keywords

 Identifiers

 Operators

 Punctuators

 Special Symbols

 Constants or Literals

 Strings

 Data values

 In a C# program, a collection of all the keywords, identifiers, operators, special symbols,

constants, strings, and data values are called tokens.

C# Keywords
19

 As every language has words to construct statements, C# programming also has

words with a specific meaning which are used to construct C# program

instructions. In the C# programming language, keywords are special words with

predefined meaning. Keywords are also known as reserved words in C#

programming.

 In the C# programming language, there are 77 keywords. All the 77 keywords

have their meaning which is already known to the compiler.

 Keywords are the reserved words with predefined meaning which already

known to the compiler

 Whenever C# compiler come across a keyword, automatically it understands its

meaning.

20

 Properties of Keywords

 All the keywords in C# programming language are defined as lowercase

letters so they must be used only in lowercase letters

 Every keyword has a specific meaning, users can not change that meaning.

 Keywords can not be used as user-defined names like class, variable,

functions, arrays, pointers, interface, namespace etc...

 Every keyword in C# programming language represents something or

specifies some kind of action to be performed by the compiler.

 The following table specifies all the 77 keywords.

21

Keywords

C# Identifiers
22

 In C# programming, programmers can specify their name to a variable, array,
pointer, function, class, interface, namespace etc... An identifier is a collection of
characters which acts as the name of variable, function, array, pointer, structure,
etc... In other words, an identifier can be defined as the user-defined name to
identify an entity uniquely in the C# programming that name may be of the class
name, variable name, function name, array name, pointer name, structure name,
Interface name, namespace name or a label.

 The identifier is a user-defined name of an entity to identify it uniquely during the
program execution.

 Example

int marks;

char studentName[30];

 Here, marks and studentName are identifiers.

Rules for Creating Identifiers
23

 An identifier can contain letters (UPPERCASE and lowercase), numeric &
underscore symbol only.

 An identifier should not start with a numerical value. It can start with a letter or
an underscore.

 We should not use any special symbols in between the identifier even
whitespace. However, the only underscore symbol is allowed.

 Keywords should not be used as identifiers.

 There is no limit for the length of an identifier. However, the compiler considers
the first 31 characters only.

 An identifier must be unique in its scope.

Rules for Creating Identifiers for better programming
24

 The following are the commonly used rules for creating identifiers for

better programming...

 The identifier must be meaningful to describe the entity.

 Since starting with an underscore may create conflict with system

names, so we avoid starting an identifier with an underscore.

 We start every identifier with a lowercase letter. If an identifier

contains more than one word then the first word starts with a

lowercase letter and second word onwards first letter is used as an

UPPERCASE letter. We can also use an underscore to separate

multiple words in an identifier.

 int a,b;

 float _a;

 char _123;

 double pi;

 int value,Value,vAlue;

 int Auto;

 int a b;

 float 123a;

 char str-;

 double pi, a;

 int break;

25

Valid Identifiers Invalid Identifiers

Datatypes
26

 Data used in C# programming is classified into different types based on its

properties. In the C# programming, a data type can be defined as a set of values

with similar characteristics. All the values in a data type have the same properties.

 Data types in the C# programming are used to specify what kind of value can be

stored in a variable. The memory size and type of the value of a variable are

determined by the variable data type. In a C# programming, each variable or

constant or array must have a data type and this data type specifies how much

memory is to be allocated and what type of values are to be stored in that variable

or constant or array. The formal definition of a data type is as follows...

 The Data type is a set of value with predefined characteristics. data types are

used to declare variable, constants, arrays, pointers, and functions.

27

28

29

 In the C# programming , data types are classified as follows...

 Value types (Basic data types or Predefined data types)

 Pointers

 Reference data types (Objects, Strings, Class, Arrays, Delegates, Interfaces)

 Derived data types (Secondary data types OR User-defined data types)

 Enumeration data types

 Void data type

 Primary data types

 The primary data types in the C# programming are the basic data types. All the primary data types are
already defined in the system. Primary data types are also called as Built-In data types. The following are
the primary data types in C# programming ...

 Integer data type

 Floating Point data type

 Double data type

 Character data type

30

Integer Data type
31

 The integer data type is a set of whole numbers.

 Every integer value does not have the decimal value.

 We use the keyword "int" to represent integer data type in C# Programming.

 We use the keyword int to declare the variables and to specify the return

type of a function.

 The integer data type is used with different type modifiers like short, long,

signed and unsigned.

 The following figure and table provides complete details about the integer

data type.

32

33

Floating Point Data Types
34

 Floating-point data types are a set of numbers with the decimal value. Every

floating-point value must contain the decimal value. The floating-point data type

has two variants...

 Float

 Double

 Decimal

 We use the keyword "float" to represent floating-point data type and "double"

to represent double data type in c. Both float and double are similar but they

differ in the number of decimal places. The float value contains 6 decimal places

whereas double value contains 15 or 19 decimal places. The following table

provides complete details about floating-point data types.

35

Character Data Type

 The character data type is a set of characters enclosed in single quotations. The

following table provides complete details about the character data type.

36

37

void data type

 The void data type means nothing or no value. Generally, the void is used to specify a function
which does not return any value. We also use the void data type to specify empty parameters
of a function.

Enumerated data type

 An enumerated data type is a user-defined data type that consists of integer constants and
each integer constant is given a name. The keyword "enum" is used to define the enumerated
data type.

Derived data types

 Derived data types are user-defined data types. The derived data types are also called as
user-defined data types or secondary data types. In the C# Programming, the derived data
types are created using the following concepts...

 Arrays

 Structures

 Unions

 Enumeration

Enumeration types
38

 An enumeration type (or enum type) is a value type defined by a set of

named constants of the underlying integral numeric type.

 To define an enumeration type, use the enum keyword and specify the

names of enum members: for eg:

enum Season

{

Spring,

Summer,

Autumn,

Winter

}

39

 By default, the associated constant values of enum members are of type int;

they start with zero and increase by one following the definition text order.

 It is possible that we can explicitly specify any other integral numeric type as

an underlying type of an enumeration type.

 We can also explicitly specify the associated constant values, as the following

example shows:

enum ErrorCode : ushort

{

None = 0,

Unknown = 1,

ConnectionLost = 100,

OutlierReading = 200

}

Reference types
40

 Variables of reference types store references to their data (objects), With reference types, two

variables can reference the same object; therefore, operations on one variable can affect the

object referenced by the other variable. With value types, each variable has its own copy of the

data, and it is not possible for operations on one variable to affect the other.

 The following keywords are used to declare reference types:

 Class

 Interface

 Delegate

 Record

 C# also provides the following built-in reference types:

 Dynamic

 Object

 String

Object
41

 The object type is an alias for System.Object in .NET.

 In the unified type system of C#, all types, predefined and user-defined,

reference types and value types, inherit directly or indirectly from

System.Object.

 It is possible to assign values of any type to variables of type object.

 Any object variable can be assigned to its default value using the literal null.

 When a variable of a value type is converted to object, it is said to be

boxed. (Boxing)

 When a variable of type object is converted to a value type, it is said to be

unboxed. (Unboxing)

Variables
42

 Variables in a C# Programming are the named memory locations where the user can store
different values of the same datatype during the program execution. In other words, a variable
can be defined as a storage container to hold values of the same datatype during the program
execution.

 The formal definition of a variable is as follows...

 Variable is a name given to a memory location where we can store different values of the
same datatype during the program execution.

 Every variable in C# Programming must be declared before it is used. Every variable must have
a datatype that determines the range and type of values be stored and the size of the memory
to be allocated.

 A variable name may contain letters, digits and underscore symbol. The following are the rules
to specify a variable name...

 Variable name should not start with a digit.

 Keywords should not be used as variable names.

 A variable name should not contain any special symbols except underscore(_).

 A variable name can be of any length but compiler considers only the first 31 characters of the
variable name.

43

Declaration of Variable

 Declaration of a variable tells the compiler to allocate the required amount of
memory with the specified variable name and allows only specified datatype
values into that memory location. In C# Programming, the declaration can be
performed either before the function as global variables or inside any block or
function. But it must be at the beginning of block or function.

Declaration Syntax:

datatype variableName;

Example

int number;

 The above declaration tells to the compiler that allocates 2 bytes of memory
with the name number and allows only integer values into that memory location.

Constants or Literals
44

 In C# programming, a constant is similar to the variable but the constant hold

only one value during the program execution. That means, once a value is

assigned to the constant, that value can't be changed during the program

execution. Once the value is assigned to the constant, it is fixed throughout the

program. A constant can be defined as follows...

 A constant is a named memory location which holds only one value throughout the

program execution.

 In C# programming, a constant can be of any data type like integer, floating-

point, character, string and double, etc.,

Literals
45

Integer constants
46

 An integer constant can be a decimal integer or hexadecimal integer. A decimal
integer value is specified as direct integer value whereas hexadecimal value is
prefixed with 'OX'.

 If the literal is suffixed by U or u, its type is the first of the following types in which
its value can be represented: uint, ulong.

 If the literal is suffixed by L or l, its type is the first of the following types in which its
value can be represented: long, ulong.

 Example

 125 → Decimal Integer Constant

 OX3A → Hexa Decimal Integer Constant

 50u → Unsigned Integer Constant

 30l → Long Integer Constant

 100ul → Unsigned Long Integer Constant

Floating Point Constants
47

 A floating-point constant must contain both integer and decimal parts. Some times it may also

contain the exponent part.

 The default value of each floating-point type is zero, 0.

 Each of the floating-point types has the MinValue and MaxValue constants that provide the

minimum and maximum finite value of that type.

 The float and double types also provide constants that represent not-a-number and infinity values.

 For example, the double type provides the following constants: Double.NaN,

Double.NegativeInfinity, and Double.PositiveInfinity.

 The type of a real literal is determined by its suffix as follows:

 The literal without suffix or with the d or D suffix is of type double

 The literal with the f or F suffix is of type float

 The literal with the m or M suffix is of type decimal

48

 When a floating-point constant is represented in exponent form, the value

must be suffixed with 'e' or 'E’.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.

const double d = 3D;

const double e = 0.42e2;

Console.WriteLine(e); // output 42

const float f = 134.45E-2f;

Console.WriteLine(f); // output: 1.3445

const decimal m = 1.5E6m;

Console.WriteLine(m); // output: 1500000

Character Constants
49

 A character constant is a symbol enclosed in single quotation. A character

constant has a maximum length of one character.

 We can specify a char value with:

 a character literal.

 a Unicode escape sequence, which is \u followed by the four-symbol

hexadecimal representation of a character code.

 a hexadecimal escape sequence, which is \x followed by the

hexadecimal representation of a character code.

50

var chars = new[]

{

‘j',
'\u006A',

'\x006A',

(char)106,

};

Console.WriteLine(string.Join(" ", chars)); //

output: j j j j

String Constants
51

 The string type represents a sequence of zero or more Unicode

characters. string is an alias for System.String in .NET.

 Although string is a reference type, the equality operators == and !=

are defined to compare the values of string objects, not references. This

makes testing for string equality more intuitive.

 For example:

const string a = "hello";

string b = "h";

// Append to contents of 'b'

b += "ello";

Console.WriteLine(a == b);

Console.WriteLine(object.ReferenceEquals(a, b));

52

 This displays "True" and then "False" because the content of the strings

are equivalent, but a and b do not refer to the same string instance.

 The + operator concatenates strings:

eg:

const string a = "good " + "morning";
const string s = "Good Morning";
const string s = "123+456";

Escape Sequences
53

 Character combinations consisting of a backslash (\) followed by a letter or

by a combination of digits are called "escape sequences."

 To represent a newline character, single quotation mark, or certain other

characters in a character constant, we use escape sequences.

 An escape sequence is regarded as a single character and is therefore valid

as a character constant.

 They are also used to provide literal representations of nonprinting characters

and characters that usually have special meanings, such as the double

quotation mark ("). The following table lists the ANSI escape sequences and

what they represent.

54

Operators
55

 An operator is a symbol used to perform arithmetic and logical operations
in a program. That means an operator is a special symbol that tells the
compiler to perform mathematical or logical operations. C# programming
language supports a rich set of operators that are classified as follows.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Increment & Decrement Operators

 Assignment Operators

 Bitwise Operators

 Conditional Operator

 Member access operators

 Special Operators

Arithmetic Operators (+, -, *, /, %)
56

 The arithmetic operators are the symbols that are used to perform basic mathematical operations like

addition, subtraction, multiplication, division and percentage modulo. The following table provides

information about arithmetic operators.

 The addition operator can be used with numerical data types and character data type. When it is

used with numerical values, it performs mathematical addition and when it is used with character data

type values, it performs concatenation (appending).

 The remainder of the division operator is used with integer data type only.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Remainder of the Division 5 % 2 = 1

57

58

59

60

61

62

63

Relational Operators (<, >, <=, >=, ==, !=)
64

 The relational operators are the symbols that are used to compare two values. That means the relational

operators are used to check the relationship between two values. Every relational operator has two results TRUE

or FALSE. In simple words, the relational operators are used to define conditions in a program. The following

table provides information about relational operators.

Operator Meaning Example

<
Returns TRUE if the first value is smaller than second value

otherwise returns FALSE
10 < 5 is FALSE

>
Returns TRUE if the first value is larger than second value

otherwise returns FALSE
10 > 5 is TRUE

<=
Returns TRUE if the first value is smaller than or equal to second

value otherwise returns FALSE
10 <= 5 is FALSE

>=
Returns TRUE if the first value is larger than or equal to second

value otherwise returns FALSE
10 >= 5 is TRUE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is FALSE

!= Returns TRUE if both values are not equal otherwise returns FALSE 10 != 5 is TRUE

65

66

67

68

Logical Operators (&&, ||, !)
69

 The logical operators are the symbols that are used to combine multiple conditions into one condition. The

following table provides information about logical operators.

 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is FALSE then complete

condition becomes FALSE.

 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE then complete

condition becomes TRUE.

Operator Meaning Example

&&
Logical AND - Returns TRUE if all conditions are TRUE

otherwise returns FALSE
10 < 5 && 12 > 10 is FALSE

||
Logical OR - Returns FALSE if all conditions are FALSE

otherwise returns TRUE
10 < 5 || 12 > 10 is TRUE

!
Logical NOT - Returns TRUE if condition is FALSE and returns

FALSE if it is TRUE
!(10 < 5 && 12 > 10) is TRUE

70

71

Increment & Decrement Operators (++ & --)
72

 The increment and decrement operators are called unary operators because both need only one

operand. The increment operators adds one to the existing value of the operand and the decrement

operator subtracts one from the existing value of the operand. The following table provides

information about increment and decrement operators.

 The increment and decrement operators are used Infront of the operand (++a) or after the operand

(a++). If it is used in front of the operand, we call it as pre-increment or pre-decrement and if it is

used after the operand, we call it as post-increment or post-decrement.

Operator Meaning Example

++
Increment - Adds one to

existing value

int a = 5;

a++; ⇒ a = 6

--
Decrement - Subtracts one

from existing value

int a = 5;

a--; ⇒ a = 4

73

74

Assignment Operators (=, +=, -=, *=, /=, %=)
75

 The assignment operators are used to assign right-hand side value (Rvalue) to the left-hand side variable

(Lvalue). The assignment operator is used in different variants along with arithmetic operators. The

following table describes all the assignment operators in the C programming language.

Operator Meaning Example

= Assign the right-hand side value to left-hand side variable A = 15

+= Add both left and right-hand side values and store the result into left-hand side variable
A += 10

⇒ A = A+10

-=
Subtract right-hand side value from left-hand side variable value and store the result into left-

hand side variable

A -= B

⇒ A = A-B

*=
Multiply right-hand side value with left-hand side variable value and store the result into left-

hand side variable

A *= B

⇒ A = A*B

/=
Divide left-hand side variable value with right-hand side variable value and store the result into

the left-hand side variable

A /= B

⇒ A = A/B

%=
Divide left-hand side variable value with right-hand side variable value and store the

remainder into the left-hand side variable

A %= B

⇒ A = A%B

76

77

Bitwise Operators (&, |, ^, ~, >>, <<)
78

 The bitwise operators are used to perform bit-level operations in the c programming language. When we use the bitwise operators,

the operations are performed based on the binary values. The following table describes all the bitwise operators in the C

programming language. Let us consider two variables A and B as A = 25 (11001) and B = 20 (10100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1 otherwise it is 0
A & B

⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0 otherwise it is 1
A | B

⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are same otherwise it is 1
A ^ B

⇒ 13 (01101)

~ the result of Bitwise once complement is negation of the bit (Flipping)
~A

⇒ -26

<<
the Bitwise left shift operator shifts all the bits to the left by the specified number

of positions

A << 2

⇒ 100 (1100100)

>>
the Bitwise right shift operator shifts all the bits to the right by the specified

number of positions

A >> 2

⇒ 6 (00110)

79

80

Conditional Operator (?:)
81

 The conditional operator is also called a ternary operator because it requires three operands. This

operator is used for decision making. In this operator, first we verify a condition, then we perform one

operation out of the two operations based on the condition result. If the condition is TRUE the first

option is performed, if the condition is FALSE the second option is performed. The conditional

operator is used with the following syntax.

 Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?100:200; ⇒ A value is 100

82

83

84

Special Operators (sizeof,is, as,typeof, etc.)
85

 The following are the special operators in C# programming language.

sizeof operator

 sizeof() is an operator in C#, it is used to get the size in bytes of compile-time

known types, it does not work with the variables or instances. This operator is

used with the following syntax.

 It accepts the type and returns an int value – which is the size of that type in

bytes.

int sizeof(type);

86

is operator
87

 The is operator is used to check if the run-time type of an object is compatible with
the given type or not.

 The expression with the type-testing is operator has the following form.

 where E is an expression that returns a value and T is the name of a type or a type
parameter.

 The is operator returns true when an expression result is non-null and any of the
following conditions are true:

 The run-time type of an expression result is T.

 The run-time type of an expression result derives from type T, implements interface T, or another
implicit reference conversion exists from it to T.

 A boxing or unboxing conversion exists from the run-time type of an expression result to type T.

E is T

88

89

As operator
90

 The as operator explicitly converts the result of an expression to a given

reference or nullable value type.

 If the conversion is not possible, the as operator returns null. Unlike a

cast expression, the as operator never throws an exception.

 The expression of the form

E is T

91

92

Difference between is and as operator
93

 The is operator is used to check if the run-time type of an object is compatible

with the given type or not, whereas the as operator is used to perform conversion

between compatible reference types or nullable types.

 The is operator is of Boolean type, whereas the as operator is not.

 The is operator returns true if the given object is of the same type, whereas the

as operator returns the object when they are compatible with the given type.

 The is operator returns false if the given object is not of the same type, whereas

the as operator returns null if the conversion is not possible.

 The is operator is used for only reference, boxing, and unboxing conversions,

whereas the as operator is used only for nullable, reference, and boxing

conversions.

typeof operator
94

 typeof() is an operator in C#, it is used to get the type (system type) of with class

name of a given type.

 By using typeof() operator, we can get the name of the type, namespace name. It

works with only compile-time known types.

 typeof() operator does not work with the variables or instances. If you want to get

the type of a variable, you can use GetType() method.

 There are main 3 properties to get the details about the type:

 typeof(type).Name or this.GetType().Name – It returns the class name only.

 typeof(type).FullName or this.GetType().FullName – It returns the class name along with

the namespace.

 typeof(type).Namespace or this.GetType().Namespace – It returns the namespace only.

95

96

Checked and unchecked operator
97

 C# provides checked and unchecked keyword to handle integral type
exceptions.

 Checked and unchecked keywords specify checked context and unchecked
context respectively.

 In checked context, arithmetic overflow raises an exception whereas, in an
unchecked context, arithmetic overflow is ignored and result is truncated.

 The checked keyword is used to explicitly check overflow and conversion of
integral type values at compile time.

 The Unchecked keyword ignores the integral type arithmetic exceptions. It
does not check explicitly and produce result that may be truncated or
wrong.

98

99

100

101

102

EXPRESSIONS IN C#

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

22-06-2021

Expressions
2

 The simplest C# expressions are literals (for example, integer and real

numbers) and names of variables. We can combine them into complex

expressions by using operators.

 An expression in C# is a combination of operands (variables, literals,

method calls) and operators that can be evaluated to a single value. To

be precise, an expression must have at least one operand but may not

have any operator.

 Typically, an expression produces a result and can be included in

another expression.

3

 The expressions are classified on based on the operations are

 Primary Expression

 Unary Expression

 Arithmetic Expression

 String Concatenation Expression

 Relational Expression

 Logical Expression

 Conditional Expression

 Assignment Expression

 Constant Expression

 Boolean Expression

 Type Conversion Expression.

 In the following code, examples of expressions are at the right-hand side of
assignments:

4

Primary Expression

 Literals or Constants.

 Variable names.

 Expression written within parentheses.

 Method access using dot notation.

 Method Invocation.

 Array element access.

 This access

 Postfix increment expression

 Postfix decrement expression

 Expressions using new operator

 Expressions using typeof operator

 Expressions using sizeof operator.

 Checked expression

 Unchecked expression.

5

Unary Expression
6

 Unary Plus Expressions

 Unary Minus Expressions

 Unary Not(!) Expressions

 Unary one’s Complement Expressions. (~)

 Unary * Expressions

 Unary & Expressions

 Prefix Increment Expressions. (++)

 Prefix Decrement Expressions (--)

 Cast Expressions.(Cast Operator)

Interpolated String Expression:
7

 The $ special character identifies a string literal as an interpolated string.

 An interpolated string is a string literal that might contain interpolation expressions.

 When an interpolated string is resolved to a result string, items with interpolation

expressions are replaced by the string representations of the expression results.

 String interpolation provides a more readable and convenient syntax to create

formatted strings than a string composite formatting feature.

Lambda Expressions
8

 lambda expression is used to create an anonymous function.

 Use the lambda declaration operator => to separate the lambda's

parameter list from its body.

 A lambda expression can be of any of the following two forms:

 Expression lambda that has an expression as its body:

 Statement lambda that has a statement block as its body:

 To create a lambda expression, we must specify input parameters (if any) on

the left side of the lambda operator and an expression or a statement block

on the other side.

9

10

Type Conversion
11

 Type conversion is converting one type of data to another type. It is also

known as Type Casting.

 In C#, type casting has two forms −

 Implicit type conversion − These conversions are performed by C# in

a type-safe manner. For example, are conversions from smaller to

larger integral types and conversions from derived classes to base

classes.

 Explicit type conversion − These conversions are done explicitly by

users using the pre-defined functions. Explicit conversions require a

cast operator.

12

13

 Any integral numeric type is implicitly convertible to any floating-point

numeric type.

 There are no implicit conversions to the byte and sbyte types. There are no

implicit conversions from the double and decimal types.

 There are no implicit conversions between the decimal type and the float or

double types.

 A value of a constant expression of type int (for example, a value

represented by an integer literal) can be implicitly converted to sbyte, byte,

short, ushort, uint, ulong, nint, or nuint, if it's within the range of the destination

type:

14

15

S.No Method Description

1 ToBoolean Converts a type to a Boolean value, where possible.

2 ToByte Converts a type to a byte.

3 ToChar Converts a type to a single Unicode character, where possible.

4 ToDateTime Converts a type (integer or string type) to date-time structures.

5 ToDecimal Converts a floating point or integer type to a decimal type.

6 ToDouble Converts a type to a double type.

7 ToInt16 Converts a type to a 16-bit integer.

8 ToInt32 Converts a type to a 32-bit integer.

9 ToInt64 Converts a type to a 64-bit integer.

10 ToSbyte Converts a type to a signed byte type.

11 ToSingle Converts a type to a small floating point number.

12 ToString Converts a type to a string.

13 ToType Converts a type to a specified type.

14 ToUInt16 Converts a type to an unsigned int type.

15 ToUInt32 Converts a type to an unsigned long type.

16 ToUInt64 Converts a type to an unsigned big integer.

16

17

Operator Precedence & Associativity
18

 Operator precedence and associativity determine the order in which the operations
in an expression are performed.

 In an expression with multiple operators, the operators with higher precedence are
evaluated before the operators with lower precedence.

 When operators have the same precedence, associativity of the operators
determines the order in which the operations are performed:

 Left-associative operators are evaluated in order from left to right. Except for the assignment
operators, all binary operators are left-associative.

 Right-associative operators are evaluated in order from right to left. The assignment operators
and the conditional operator ?: are right-associative.

 We can use parentheses to change the order of evaluation imposed by operator
precedence and associativity.

 The following table lists the C# operators starting with the highest precedence to the
lowest. The operators within each row have the same precedence.

19

20

21

22

23

Control Statements
24

 The control statements are used to control the flow of execution of the

program.

 If we want to execute a specific block of instructions only when a certain

condition is true, then control statements are useful.

 If we want to execute a block repeatedly, then loops are useful.

 C# classifies these control statements into two categories

 Conditional execution

 Unconditional execution

25

Unconditional

JumpIterationSelection

Conditional

If-else If-else-if switch

foreachfor
Do-

while
while

breakif continue goto returnthrow

Simple if
26

 Simple if statement is used to verify the given condition and executes the

block of statements based on the condition result.

 The simple if statement evaluates specified condition.

 If it is TRUE, it executes the next statement or block of statements.

 If the condition is FALSE, it skips the execution of the next statement or block

of statements.

 Simple if statement is used when we have only one option that is executed or

skipped based on a condition.

 The general syntax and execution flow of the simple if statement is as follows.

27

28

29

30

31

If-else statement
32

 The if-else statement is used to verify the given condition and executes only

one out of the two blocks of statements based on the condition result.

 The if-else statement evaluates the specified condition.

 If it is TRUE, it executes a block of statements (True block).

 If the condition is FALSE, it executes another block of statements (False

block).

 The if-else statement is used when we have two options and only one

option has to be executed based on a condition result (TRUE or FALSE).

 The general syntax and execution flow of the if-else statement is as

follows.

33

34

35

Nested if statement
36

 Writing a if statement inside another if statement is called nested if statement.

 The nested if statement can be defined using any combination of simple if & if-else

statements.

 The general syntax of the nested if statement is as follows...

37

38

if...else if...else statement
39

 The if-else-if ladder statement executes one condition from multiple

statements. The execution starts from top and checked for each if condition.

 We can use multiple else if blocks to add multiple conditions but it requires

atleast one if block at the beginning, we can't directly write else and else if

statements without having any if block.

 The statement of if block will be executed which evaluates to be true. If none

of the if condition evaluates to be true then the last else block is evaluated.

 The general syntax of the if-else-if statement is as follows...

40

41

42

43

Switch Statement
44

 In C#, Switch statement is a multiway branch statement.

 It provides an efficient way to transfer the execution to different parts of a code
based on the value of the expression.

 The switch expression is of integer type such as int, char, byte, or short, or of an
enumeration type, or of string type.

 The expression is checked for different cases and the one match is executed.

 The switch statement is often used as an alternative to an if-else construct if a single
expression is tested against three or more conditions.

 C# doesn't allow execution to continue from one switch section to the next.

 When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, then it will raise a
compile time error.

45

 In C#, duplicate case values are not allowed.

 The data type of the variable in the switch and value of a case must be

of the same type.

 The value of a case must be a constant or a literal. Variables are not

allowed.

 The break in switch statement is used to terminate the current sequence.

 The default statement is optional and it can be used anywhere inside the

switch statement.

 Multiple default statements are not allowed.

46

47

48

49

50

51

52

53

54

55

Iteration Statements
56

 Iteration statements or Loops are used in programming to repeatedly
execute a certain block of statements until some condition is met.

 The following statements repeatedly execute a statement or a block of
statements:

 The for statement: executes its body while a specified Boolean expression
evaluates to true.

 The foreach statement: enumerates the elements of a collection and executes its
body for each element of the collection.

 The do statement: conditionally executes its body one or more times.

 The while statement: conditionally executes its body zero or more times.

 At any point within the body of an iteration statement, you can break out
of the loop by using the break statement, or step to the next iteration in
the loop by using the continue statement.

while loop
57

 C# provides the while loop to repeatedly execute a block of code as long as the

specified condition returns false.

 The while loop starts with the while keyword, and it must include a Boolean

conditional expression inside brackets that returns either true or false.

 It executes the code block until the specified conditional expression returns false.

 In a while loop, initialization should be done before the loop starts, and increment or

decrement steps should be inside the loop.

 The statement(s) inside the while loop may be a single statement or a block of

statements.

 The key point of the while loop is that the loop might not ever run. When the

condition is tested and the result is false, the loop body is skipped and the first

statement after the while loop is executed.

58

59

60

61

62

63

do while Statement
64

 The do while loop is the same as while loop except that it executes the code block at
least once.

 The do-while loop starts with the do keyword followed by a code block and a
boolean expression with the while keyword.

 The do while loop stops execution exits when a boolean condition evaluates to false.
Because the while(condition) specified at the end of the block, it certainly executes
the code block at least once.

 In a while loop, initialization should be done before the loop starts, and increment or
decrement steps should be inside the loop.

 The statement(s) inside the while loop may be a single statement or a block of
statements.

 The key point of the do while loop is that the loop will executed atleast once, even
on the first time When the condition is tested and the result is false.

 This is the reason, do while is called as exit controlled loop.

65

66

67

68

for loop
69

 A for loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times.

 C# for loop has three statements: initialization, condition and iterator.

 The initialization statement is executed at first and only once. Here, the variable
is usually declared and initialized.

 Then, the condition is evaluated. The condition is a Boolean expression, i.e. it
returns either true or false.

 If the condition is evaluated to true:
◼ The body of the loop, which must be a statement or a block of statements.

◼ Then, the iterator statement is executed which usually changes the value of the initialized
variable.

◼ Again the condition is evaluated.

◼ The process continues until the condition is evaluated to false.

 If the condition is evaluated to false, the for loop terminates.

70

 The iterator section can contain zero or more of the following statement

expressions, separated by commas:

 prefix or postfix increment expression, such as ++i or i++

 prefix or postfix decrement expression, such as --i or i--

 assignment

 invocation of a method

 creation of an object by using the new operator.

 All the sections of the for statement are optional.

71

72

73

74

foreach loop
75

 foreach loop is a different kind of looping constructs in C# programming that
doesn’t includes initialization, termination and increment/decrement characteristics.

 The foreach loop in C# executes a block of code on each element in an array or a
collection of items. When executing foreach loop it traversing items in a collection or
an array .

 The foreach loop is useful for traversing each items in an array or a collection of
items and displayed one by one.

 The iteration variable corresponds to a read-only local variable with a scope that
extends over the embedded statement.

 During execution of a foreach statement, the iteration variable represents the
collection element for which an iteration is currently being performed.

 A compile-time error occurs if the embedded statement attempts to modify the
iteration variable (via assignment or the ++ and -- operators) or pass the iteration
variable as a ref or out parameter.

76

 The in keyword used along with foreach loop is used to iterate over the

iterable-item.

 The in keyword selects an item from the iterable-item on each iteration and

store it in the variable element.

 On first iteration, the first item of iterable-item is stored in element. On second

iteration, the second element is selected and so on.

 The number of times the foreach loop will execute is equal to the number of

elements in the array or collection.

77

78

79

80

81

82

83

break Statements
84

Break (breaks the loop/switch)

 Break statement is used to terminate the current loop iteration or terminate
the switch statement in which it appears.

 When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next statement
following the loop.

 Break statement can be used in the following scenarios:

 for loop (For loop & nested for loop.

 foreach loop (foreach loop & nested foreach loop.

 While (while loop & nested while loop).

 Do while (do while loop and nested while loop)

 Switch case (Switch cases and nested switch cases)

85

86

87

88

89

Continue Statements
90

 A Continue statement jumps out of the current loop condition and jumps
back to the starting of the loop code.

 It is represented by continue;

 Continue statement can be used in the following scenarios:

 for loop (For loop & nested for loop.

 foreach loop (foreach loop & nested foreach loop.

 While (while loop & nested while loop).

 Do while (do while loop and nested while loop)

 Switch case (Switch cases and nested switch cases)

91

92

93

goto statement
94

 The goto statement transfers the program control directly to a labeled

statement.

 The label is the valid identifier and placed just before the statement

from where the control is transferred.

 A common use of goto is to transfer control to a specific switch-case

label or the default label in a switch statement.

 The goto statement is also useful to get out of deeply nested loops.

95

96

97

Program Exercise
98

99

100

101

102

103

104

105

106

107

108

109

110

ARRAYS IN C#

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

28-06-2021

Arrays
2

 A variable is used to store a literal value, whereas an array is used to store

multiple literal values.

 An array is the data structure that stores a fixed number of literal values

(elements) of the same data type.

 Array elements are stored contiguously in the memory.

 The lowest address corresponds to the first element and the highest address to

the last element.

3

 In C#, an array can be of three types: Single-dimensional, Multidimensional, and
Jagged array.

 In C#, array is an object of base type System.Array.

 In C#, array index starts from 0.

 In C#, arrays can be declared as fixed-length or dynamic.

 A fixed-length array can store a predefined number of items.

 A dynamic array does not have a predefined size. The size of a dynamic array
increases as you add new items to the array.

 Its possible to change a dynamic array to static after it is defined.

 If we want the array to store elements of any type, we can specify object as its
type. In the unified type system of C#, all types, predefined and user-defined,
reference types and value types, inherit directly or indirectly from Object.

4

5

6

7

Accessing Array Elements
8

 Array elements can be accessed using an index.

 An index is a number associated with each array element, starting with index
0 and ending with array size - 1.

 There is a situation that we are trying to add more elements than its specified
size will result in IndexOutOfRangeException.

 Arrays can be accessed in various methods like

 Accessing individual elements.

 Accessing using for loop.

 Accessing using object.

 Accessing using foreach statement.

 Accessing using LINQ objects.

Accessing individual array elements
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Multidimensional Arrays
25

 C# supports multidimensional arrays up to 32 dimensions.

 The multidimensional array can be declared by adding commas in the square

brackets.

 For example, [,] declares two-dimensional array, [, ,] declares three-dimensional

array, [, , ,] declares four-dimensional array, and so on.

 So, in a multidimensional array, no of commas = No of Dimensions + 1.

26

Accessing Individual Elements
27

28

29

30

31

32

33

34

35

Jagged Arrays
36

 Jagged array is a array of arrays such that member arrays can be of different

sizes.

 In other words, the length of each array index can differ.

 The elements of Jagged Array are reference types and initialized to null by default.

 Jagged Array can also be mixed with multidimensional arrays. Here, the number of

rows will be fixed at the declaration time, but you can vary the number of columns.

 In Jagged arrays, user has to provide the number of rows only. If the user is also

going to provide the number of columns, then this array will be no more Jagged

Array.

 The elements of Jagged Array must be initialized before its use.

37

38

39

40

Array Class
41

 Array Class provides methods for creating, manipulating, searching, and sorting

arrays, thereby serving as the base class for all arrays in the common language

runtime.

 Array class is defined in the System namespace, is the base class for arrays in C#.

 Array class is an abstract base class that means we cannot create an instance of the

Array class.

Properties Definition

IsFixedSize Return a value indicating if an array has a fixed size or not.

IsReadOnly Returns a value indicating if an array is read-only or not.

LongLength Returns a 64-bit integer that represents a total number of items in all the dimensions of an array.

Length Returns a 32-bit integer that represents the total number of items in all the dimensions of an array.

Rank Returns the number of dimensions of an array.

42

BinarySearch() Searches a one-dimensional sorted Array for a value, using a binary search algorithm.

Copy() Copy array elements to another elements

Resize() Changes the number of elements of a one-dimensional array to the specified new size.

Clear() Sets a range of elements in the Array to zero, to false, or to null, depending on the element

type.

IndexOf () Searches for the specified object and returns the index of its first occurrence in a one-

dimensional array or in a range of elements in the array.

LastIndexOf () Returns the index of the last occurrence of a value in a one-dimensional Array or in a portion

of the Array.

Sort() Sorts the elements in a one-dimensional array.

Reverse() Reverses the order of the elements in a one-dimensional Array or in a portion of the Array

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ArrayList
59

 In C#, the ArrayList represents an ordered collection of an object that can be

indexed individually.

 It is basically an alternative to an array.

 However, unlike array you can add and remove items from a list at a specified

position using an index and the array resizes itself automatically.

 It also allows dynamic memory allocation, adding, searching and sorting items in the

list.

60

PROPERTIES Definition

Capacity Gets or sets the number of elements that the ArrayList can

contain.

Count Gets the number of elements actually contained in

the ArrayList.

IsFixedSize Gets a value indicating whether the ArrayList has a fixed

size.

IsReadOnly Gets a value indicating whether the ArrayList is read-

only.

Item[Int32] Gets or sets the element at the specified index.

61

Methods Description

Add() Add() method adds single elements at the end of ArrayList.

AddRange() AddRange() method adds all the elements from the specified collection into ArrayList.

Insert() Insert() method insert a single elements at the specified index in ArrayList.

InsertRange() InsertRange() method insert all the elements of the specified collection starting from specified index in ArrayList.

Remove() Remove() method removes the specified element from the ArrayList.

RemoveRange() RemoveRange() method removes a range of elements from the ArrayList.

RemoveAt() Removes the element at the specified index from the ArrayList.

Sort() Sorts entire elements of the ArrayList.

Reverse() Reverses the order of the elements in the entire ArrayList.

Contains Checks whether specified element exists in the ArrayList or not. Returns true if exists otherwise false.

Clear Removes all the elements in ArrayList.

CopyTo Copies all the elements or range of elements to compitible Array.

GetRange Returns specified number of elements from specified index from ArrayList.

IndexOf Search specified element and returns zero based index if found. Returns -1 if element not found.

ToArray Returns compitible array from an ArrayList.

62

STRINGS IN C#

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

02-07-2021

Character Handling
2

 The System.Char data type is used to hold a single, unicode character.

 C# has an alias for it, called char, which you can use when declaring your char variables:

char ch;

 The default value of the char type is \0.

 The char type supports comparison, equality, increment, and decrement operators. Moreover, for

char operands, arithmetic and bitwise logical operators perform an operation on the

corresponding character codes and produce the result of the int type.

 we can specify a char value with:

 a character literal.

 a Unicode escape sequence, which is \u followed by the four-symbol hexadecimal representation

of a character code.

 a hexadecimal escape sequence, which is \x followed by the hexadecimal representation of a

character code.

3

 Since a string is basically just a range of characters, .NET actually uses a list of char's to represent a string. That
also means that you can pull out a single char from a string, or iterate over a string and get each character as a
char data type:

string helloWorld = "Hello, world!";

foreach(char c in helloWorld)

{

Console.WriteLine(c);

}

 Generally char is also considered as a numerical value, where each character has a specific number in the
Unicode "alphabet".

 In C#, it is very easy to go from a char data type to its numeric representation.

string helloWorld = "Hello, world!";

foreach(char c in helloWorld)

{

Console.WriteLine(c + ": " + (int)c);

}

4

Properties Description

MaxValue Represents the largest possible value of a Char. This field is constant.

MinValue Represents the smallest possible value of a Char. This field is constant

Methods Description

CompareTo(Char)

Compares this instance to a specified Char object and indicates whether this instance

precedes, follows, or appears in the same position in the sort order as the specified Char

object.

Equals(Char) Returns a value that indicates whether this instance is equal to the specified Char object.

GetNumericValue(Char)
Converts the specified numeric Unicode character to a double-precision floating point

number.

GetUnicodeCategory(Char)
Categorizes a specified Unicode character into a group identified by one of the

UnicodeCategory values.

IsControl(Char) Indicates whether the specified Unicode character is categorized as a control character.

IsDigit(Char) Indicates whether the specified Unicode character is categorized as a decimal digit.

IsLetter(Char) Indicates whether the specified Unicode character is categorized as a Unicode letter.

5

Methods Description

IsLetterOrDigit(Char) Indicates whether the specified Unicode character is categorized as a letter or a decimal digit.

IsLower(Char) Indicates whether the specified Unicode character is categorized as a lowercase letter.

IsNumber(Char) Indicates whether the specified Unicode character is categorized as a number.

IsPunctuation(Char) Indicates whether the specified Unicode character is categorized as a punctuation mark.

IsSeparator(Char) Indicates whether the specified Unicode character is categorized as a separator character.

IsSymbol(Char) Indicates whether the specified Unicode character is categorized as a symbol character.

IsUpper(Char) Indicates whether the specified Unicode character is categorized as an uppercase letter.

IsWhiteSpace(Char) Indicates whether the specified Unicode character is categorized as white space.

Parse(String) Converts the value of the specified string to its equivalent Unicode character.

ToLower(Char) Converts the value of a Unicode character to its lowercase equivalent.

ToString() Converts the value of this instance to its equivalent string representation.

ToString(IFormatProvider)
Converts the value of this instance to its equivalent string representation using the specified culture-

specific format information.

ToUpper(Char) Converts the value of a Unicode character to its uppercase equivalent.

TryParse(String, Char)
Converts the value of the specified string to its equivalent Unicode character. A return code

indicates whether the conversion succeeded or failed.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Strings
21

 Strings are collections of characters that are grouped together to form words or

sentences.

 There is no null-terminating character at the end of a C# string; therefore a C# string

can contain any number of embedded null characters ('\0’).

 The Length property of a string represents the number of Char objects it contains, not

the number of Unicode characters.

 In C#, the string keyword is an alias for String. Therefore, String and string are

equivalent, regardless it is recommended to use the provided alias string as it works

even without using System;.

 The String class provides many methods for safely creating, manipulating, and

comparing strings.

 Following are the ways to declare and initialize the strings.

22

23

24

 In C#, the string is immutable, which means the string object cannot be

modified once it is created.

 If any changes are made to the string object, like adding or modifying an

existing value, it will simply discard the old instance in memory and create a

new instance to hold the new value.

 For example, when we create a new string variable “msg” with the text

“welcome”, a new instance will create a heap memory to hold this value.

 Now, if we make any changes to the msg variable, like changing the text from

“welcome” to “welcome to C#”, then the old instance on heap memory will be

discarded, and another instance will create on heap memory to hold the

variable value instead of modifying the old instance in the memory.

25

 In C#, if we perform modifications like inserting, concatenating, removing, or

replacing a value of the existing string multiple times, every time the new instance

will create on heap memory to hold the new value, so automatically the performance

of the application will be affected.

 In C#, Strings can be declared using following methods

 Using Character array.

 Using String Class

 Using string object.

 Using string object constructor.

 Converting value to String type.

 In C#, String class can have only one property called as length. The Length property

gets the number of characters in the current String object.

26

Method Name Description

Clone() It is used to return a reference to this instance of String.

Compare(String, String)
It is used to compares two specified String objects. It returns an integer that indicates their

relative position in the sort order.

Concat(String, String) It is used to concatenate two specified instances of String.

Contains(String) It is used to return a value indicating whether a specified substring occurs within this string.

Copy(String) It is used to create a new instance of String with the same value as a specified String.

CopyTo(Int32, Char[], Int32, Int32)
It is used to copy a specified number of characters from a specified position in this instance to a

specified position in an array of Unicode characters.

EndsWith(String) It is used to check that the end of this string instance matches the specified string.

Equals(String, String) It is used to determine that two specified String objects have the same value.

Format(String, Object)
It is used to replace one or more format items in a specified string with the string representation

of a specified object.

GetType() It is used to get the Type of the current instance.

IndexOf(String)
It is used to report the zero-based index of the first occurrence of the specified string in this

instance.

Insert(Int32, String)
It is used to return a new string in which a specified string is inserted at a specified index

position.

27

Method Name Description

Join(String, String[])
It is used to concatenate all the elements of a string array, using the specified separator between each

element.

LastIndexOf(Char)
It is used to report the zero-based index position of the last occurrence of a specified character within

String.

LastIndexOfAny(Char[])
It is used to report the zero-based index position of the last occurrence in this instance of one or more

characters specified in a Unicode array.

PadLeft(Int32)
It is used to return a new string that right-aligns the characters in this instance by padding them with

spaces on the left.

PadRight(Int32)
It is used to return a new string that left-aligns the characters in this string by padding them with spaces

on the right.

Remove(Int32)
It is used to return a new string in which all the characters in the current instance, beginning at a

specified position and continuing through the last position, have been deleted.

Replace(String, String)
It is used to return a new string in which all occurrences of a specified string in the current instance are

replaced with another specified string.

Split(Char[]) It is used to split a string into substrings that are based on the characters in an array.

StartsWith(String) It is used to check whether the beginning of this string instance matches the specified string.

Substring(Int32)
It is used to retrieve a substring from this instance. The substring starts at a specified character position

and continues to the end of the string.

28

Method Name Description

ToCharArray() It is used to copy the characters in this instance to a Unicode character array.

ToLower() It is used to convert String into lowercase.

ToString() It is used to return instance of String.

ToUpper() It is used to convert String into uppercase.

Trim() It is used to remove all leading and trailing white-space characters from the current String object.

TrimEnd(Char[])
It Is used to remove all trailing occurrences of a set of characters specified in an array from the current

String object.

TrimStart(Char[])
It is used to remove all leading occurrences of a set of characters specified in an array from the current

String object.

29

30

31

32

33

34

35

36

37

38

39

String.Format()
40

 The string class also provides the String.Format() method.

 The primary purpose of the C# String.Format() method is to provide a
mechanism for inserting string, numerical or boolean values into a string.

 The general syntax of the String.Format() method is as follows:

String.Format("format string", arg1, arg2,);

 The format string is the string into which the values will be placed. Within
this string are place holders which indicate the location of each value
within the string.

 Place holders take the form of braces surrounding a number indicating the
corresponding argument to be substituted for the place holder. Following
on from the format string is a comma separated list of arguments. There
must be an argument for each of the place holders.

41

42

43

StringBuilder
44

 In C#, StringBuilder is a class that is useful to represent a mutable string of
characters, and it is an object of the System.Text namespace.

 Like string in C#, we can use a StringBuilder to create variables to hold any
text, a sequential collection of characters based on our requirements.

 In C#, both String and StringBuilder will represent a sequence of characters
and perform the same kind of operations, but the only difference is strings
are immutable, and StringBuilder is mutable.

 Generally, in C# the string object cannot be modified once it is created. If
any changes are made to the string object, like add or modify an existing
value, it will simply discard the old instance in memory and create a new
instance to hold the new value. If we are doing repeated modifications on the
string object, it will affect the application's performance.

 For example, a new string, "Hello

World!" will occupy a memory space

on the heap. Now, by changing the

initial string "Hello World!" to "Hello

World! from APCAS" will create a

new string object on the memory

heap instead of modifying an

original string at the same memory

address.

 This behavior would delay the

performance if the original string

changed multiple times by replacing,

appending, removing, or inserting

new strings in the original string.

45

 To solve this problem, C# introduced an
alternative called StringBuilder, which
is a mutable string class.

 Mutability means once an instance of
the class is created, then the same
instance will be used to perform any
operations like inserting, appending,
removing, or replacing the characters
instead of creating a new instance for
every time.

 In C#, the StringBuilder is a dynamic
object which will expand a memory
dynamically to accommodate the
modifications of string instead of
creating a new instance in the memory.

46

How StringBuilder works
47

 The StringBuilder.Length property indicates the number of characters the
StringBuilder object currently contains.

 Once we add characters to the StringBuilder object, its length increases until it
equals the size of the StringBuilder.Capacity property, which defines the number of
characters that the object can contain.

 If the number of added characters causes the length of the StringBuilder object to
exceed its current capacity, new memory is allocated, the value of the Capacity
property is doubled, new characters are added to the StringBuilder object, and its
Length property is adjusted.

 Additional memory for the StringBuilder object is allocated dynamically until it
reaches the value defined by the StringBuilder.MaxCapacity property.

 When the maximum capacity is reached, no further memory can be allocated for
the StringBuilder object, and trying to add characters or expand it beyond its
maximum capacity throws either an ArgumentOutOfRangeException or an
OutOfMemoryException exception.

48

 The following example illustrates how a StringBuilder object allocates new memory
and increases its capacity dynamically as the string assigned to the object expands.

 The code creates a StringBuilder object by calling its default (parameterless)
constructor.

 The default capacity of this object is 16 characters, and its maximum capacity is
more than 2 billion characters.

 Appending the string "This is a sentence." results in a new memory allocation
because the string length (19 characters) exceeds the default capacity of the
StringBuilder object. The capacity of the object doubles to 32 characters, the new
string is added, and the length of the object now equals 19 characters. The code
then appends the string "This is an additional sentence." to the value of the
StringBuilder object 11 times. Whenever the append operation causes the length of
the StringBuilder object to exceed its capacity, its existing capacity is doubled and
the Append operation succeeds.

49

Memory allocation
50

 The default capacity of a StringBuilder object is 16 characters, and its default
maximum capacity is Int32.MaxValue. These default values are used if you call the
StringBuilder() and StringBuilder(String) constructors.

 You can explicitly define the initial capacity of a StringBuilder object in the following
ways:

 By calling any of the StringBuilder constructors that includes a capacity parameter when
you create the object.

 By explicitly assigning a new value to the StringBuilder.Capacity property to expand an
existing StringBuilder object. Note that the property throws an exception if the new
capacity is less than the existing capacity or greater than the StringBuilder object's
maximum capacity.

 By calling the StringBuilder.EnsureCapacity method with the new capacity. The new
capacity must not be greater than the StringBuilder object's maximum capacity.
However, unlike an assignment to the Capacity property, EnsureCapacity does not throw
an exception if the desired new capacity is less than the existing capacity; in this case,
the method call has no effect.

51

 If the length of the string assigned to the StringBuilder object in the constructor

call exceeds either the default capacity or the specified capacity, the

Capacity property is set to the length of the string specified with the value

parameter.

 we can explicitly define the maximum capacity of a StringBuilder object by

calling the StringBuilder(Int32, Int32) constructor. we can't change the

maximum capacity by assigning a new value to the MaxCapacity property,

because it is read-only.

StringBuilder Constructors
52

Constructor Description

StringBuilder() Initializes a new instance of the StringBuilder class.

StringBuilder(Int32)
Initializes a new instance of the StringBuilder class using the specified

capacity.

StringBuilder(String)
Initializes a new instance of the StringBuilder class using the specified

string.

StringBuilder(Int32, Int32)
Initializes a new instance of the StringBuilder class that starts with a

specified capacity and can grow to a specified maximum.

StringBuilder(String, Int32)
Initializes a new instance of the StringBuilder class using the specified

string and capacity.

StringBuilder(String, Int32, Int32, Int32)
Initializes a new instance of the StringBuilder class from the specified

substring and capacity.

Creating a StringBuilder Object
53

 We can create an object of the StringBuilder class using the new keyword and
passing an initial string. The following example demonstrates creating StringBuilder
objects.

 Optionally, you can also specify the maximum capacity of the StringBuilder object
using overloaded constructors.

StringBuilder sb = new StringBuilder(); //string will be appended later

StringBuilder sb = new StringBuilder("Hello World!");

StringBuilder sb = new StringBuilder(50); //string will be appended later

StringBuilder sb = new StringBuilder("Hello World!", 50);

 Above, C# allocates a maximum of 50 spaces sequentially on the memory heap.
This capacity will automatically be doubled once it reaches the specified capacity.

 We can also use the capacity or length property to set or retrieve the StringBuilder
object's capacity.

54

 Using for loop, it is possible to iterate and get or set a character at the
specified index.

Example: StringBuilder Iteration

StringBuilder sb = new StringBuilder("Hello World!");

for(int i = 0; i < sb.Length; i++)

Console.Write(sb[i]); // output: Hello World!

Retrieve String from StringBuilder

 The StringBuilder is not the string. Use the ToString() method to retrieve a
string from the StringBuilder object.

Example: Retrieve String from StringBuilder

StringBuilder sb = new StringBuilder("Hello World!");

String greet = sb.ToString(); //returns "Hello World!"

StringBuilder Properties
55

Property Description

StringBuilder.Capacity
Gets or sets the maximum number of characters that can be contained in the memory

allocated by the current instance.

StringBuilder.Chars[Int32] Gets or sets the character at the specified character position in this instance.

StringBuilder.Length Gets or sets the length of the current StringBuilder object.

StringBuilder.MaxCapacity Gets the maximum capacity of this instance.

StringBuilder Methods
56

Method Description

StringBuilder.Append
This method will append the given string value to the end of the current

StringBuilder.

StringBuilder.AppendFormat It will replace a format specifier passed in a string with formatted text.

StringBuilder.Clear Removes all characters from the current StringBuilder instance.

StringBuilder.CopyTo
Copies the characters from a specified segment of this instance to a destination

Char span.

StringBuilder.EnsureCapacity(Int32)
Ensures that the capacity of this instance of StringBuilder is at least the specified

value.

StringBuilder.Equals
Returns a value indicating whether the characters in this instance are equal to the

characters in a specified read-only character span.

StringBuilder.Insert It inserts a string at the specified index of the current StringBuilder.

StringBuilder.Remove It removes a specified number of characters from the current StringBuilder.

StringBuilder.Replace It replaces a specified character at a specified index.

StringBuilder.ToString Converts the value of a StringBuilder to a String.

57

58

59

60

61

62

63

64

65

66

PRINCIPLES OF OBJECT ORIENTED

PROGRAMMING

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

08-07-2021

Object Oriented Programming (OOPS)
2

 Object-Oriented Programming or OOPs refers to languages that uses
objects in programming.

 Object Oriented programming (OOP) is a programming paradigm that
relies on the concept of classes and objects.

 OOPs ties data more closely to the functions that operate on it, and
protects it from accidental modification from outside functions.

 OOP allows decomposition of a problem into a number of entities called
objects and then builds data and functions around these objects.

 The data of an object can be accessed only by the functions associated
with that object. However, functions of one object can access the function of
other objects.

3

Features of OOPs
4

 Some of the striking features of programming are:

 Emphasis is on data rather than procedure.

 Programs are divided into what are known as objects.

 Data structures are designed such that they characterize the objects.

 Functions that operate on the data of an object are tied together in the
data structure.

 Data is hidden and cannot be accessed by external functions,

 Objects may communicate with each other through functions,

 Now data and functions can be easily added whenever necessary.

 Follows bottom-up approach in program design,

5

 “Object Oriented Programming as an approach that
provides a way of modularizing programs by creating
partitioned memory area ,for both data and functions that
can be used as templates for creating copies of such modules
on demand."

 Thus, an object is considered to be a partitioned area of
computer memory that stores data and set of operations that
can access that data Since the memory partitions are
independent, the objects can be used in a variety of
different programs without modifications.

Key concepts of OOPS
6

 The Object-Oriented Programming paradigm emphasizes the data
rather than the algorithm.

 It implements programs using classes and objects.

 The Object Oriented Programing has been developed to overcome
the drawbacks of Procedural and Structured programming.

 It is widely accepted that Object Oriented Programming is the most
important and powerful way of creating software.

 The Object-Oriented Programming approach mainly encourages:

 Modularization: where the program can be decomposed into modules.

 Software reuse: where a program can be composed from existing and
new modules.

Data Abstraction
7

 Abstraction refers to showing only the essential features without

revealing background details.

 Classes use the concept of abstraction to define a list of abstract

attributes and function which operate on these attributes.

 They encapsulate all the essential properties of the object that are

to be created. The attributes are called as Data Members because

they hold information.

 The functions that operate on these data called Methods or

Member Functions.

Data Encapsulation
8

 The mechanism by which the data and functions are bound together into a
single unit is known as Encapsulation.

 It implements abstraction.

 Encapsulation is about binding the data variables and functions together in
class. It can also be called Data Binding.

 Encapsulation is the most striking feature of a class.

 The data is not accessible to the outside world, and only those functions
which are wrapped in the class can access it. These functions provide the
interface between the object's data and the program.

 This encapsulation of data from direct access by the program is called
Data Hiding or Information Hiding.

Class
9

 It is similar to structures in C and C++ language.

 A Class is a construct in C# which is used to bind data and its associated
function together into a single unit using the encapsulation concept.

 They may or may not be of similar data types. With the addition to
data types, classes give you the provision to keep your data secure and
add functions within the class, unlike what we saw in structures in C.

 Class is a reference data type, which holds its own data members and
member functions, which can be accessed and used by creating an
instance of that class..

 Classes can also be defined as a template or blueprint representing a
group of objects that share common properties and relationship.

Objects
10

 Objects are the basic unit of OOP.

 Basically, an object is created from a class. They are instances of class also

called class variables.

 An identifiable entity with some characteristics and behavior is called an

object.

 An object is an entity that has state and behavior. Here, state means data and

behavior means functionality.

 An Object is an instance of a Class. When a class is defined, no memory is

allocated but when it is instantiated (i.e. an object is created) memory is

allocated.

11

General form of Class
12

Defining a Class
13

 A class definition starts with the keyword class followed by the class name; and the class
body enclosed by a pair of curly braces.

 Class is a keyword and class name is any valid C# identifier. Everything inside the class is
optional.

 Class members may have fields, methods, constructors, destructors, properties, indexers,
delegates.

 Eg:
class Program

{

int a=10;

void display();

public static void Main()

{

}

}

Access Modifiers
14

 The Access Specifiers in C# are also called access modifiers which are used to
define the scope of the type as well as the scope of their members. That is who can
access them and who cannot access them are defined by the Access Specifiers.

 C# supports 5 access specifiers, they are as follows

 Private

 Internal

 Protected

 Protected Internal

 Public

 Members that are defined in a type with any scope or specifiers are always
accessible within that type; restriction comes into the picture only when they try to
access them outside of the type.

 The default access specifier for a class type is internal. Default access for the
members is private.

15

Modifier Accessibility Control

private
member is accessible only within the class containing the

member.

public
member is accessible from anywhere outside the class

and it is accessible in derived classes.

protected
member is visible only to its own class and its derived

class.

internal

member is available within the assembly or component

that is being created, but not to the clients of the

component.

protected internal
available in containing program or assembly and in the

derived classes.

16

CLASS EXAMPLES

Examples
17

18

19

20

21

22

23

24

25

EXAMPLES OF ACCESS

SPECIFIERS

26

27

28

29

30

31

32

33

Constructors
34

 A class constructor is a special member function of a class that is executed

whenever we create new objects of that class.

 A constructor has exactly the same name as that of class and it does not have

any return type.

 The Constructors are responsible for two things. One is the object initialization

and the other one is memory allocation. The role of the new keyword is to

create the object.

 Rules to follow while creating the C# Constructors:

 The constructor name should be the same as the class name.

 It should not contain return type even void also.

 As part of the constructor body return statement with value is not allowed.

Types of Constructor
35

 There are five types of constructors available in C#, they are as follows

 Default Constructor

 Parameterized Constructor

 Copy Constructor

 Static Constructor

 Private Constructor

 Default Constructor: The Constructor without parameter is called a
default constructor. Again the default constructor is classified into two
types.

 System-defined default constructor

 User-defined default constructor

36

 System Defined Default Constructor: As a programmer, if you are not

defined any constructor explicitly in your program, then by default the

system will provide one constructor at the time of compilation. That

constructor is called a default constructor.

 The default constructor will assign default values to the data members

(non-static variables).

 As this constructor is created by the system this is also called a system-

defined default constructor.

37

38

User-defined default constructor
39

 if we want to execute some logic at the time of object creation, that

logic may be object initialization logic or some other useful logic, then as

a developer, we must provide the constructor explicitly.

 The constructor which is defined by the user without any parameter is

called a user-defined default constructor.

 This constructor does not accept any argument but as part of the

constructor body, we can write our own logic.

40

41

Parameterized Constructor
42

 The drawback of the above user-defined default constructor is every instance

(i.e. object) of the class will be initialized (assigned) with the same values. That

means it is not possible to initialize each instance of the class with different

values.

 If you want to initialize the object dynamically with the user-given values then you

need to use the parameterized constructor. The advantage is that you can

initialize each object with different values.

 The developer given constructor with parameters is called the parameterized

constructor in C#. With the help of a Parameterized constructor, we can initialize

each instance of the class with different values. That means using parameterized

constructor we can store a different set of values into different objects created to

the class.

43

44

45

 In C#, within a class, we can define any number of constructors. But the

most important point that you need to remember is that each and every

constructor must have a different signature.

 Different signature means the number, type, and parameter order

should be different.

 So in a class, we can define one no-argument constructor plus ‘n’ number

of parameterized constructors in C#.

46

47

48

Copy Constructor
49

 The constructor which takes a parameter of the class type is called a

copy constructor.

 This constructor is used to copy one object’s data into another object.

 The main purpose of the copy constructor is to initialize a new object

(instance) with the values of an existing object (instance).

50

51

52

53

Private Constructor
54

 In C#, it is also possible to create a constructor as private.

 The constructor whose accessibility is private is known as a private

constructor.

 When a class contains a private constructor then we cannot create an

object for the class outside of the class. So, private constructors are used

to creating an object for the class within the same class.

 Generally, private constructors are used in the Remoting concept.

55

56

Static Constructor
57

 When a constructor is created using a static keyword, it
will be invoked only once for all of the instances of the
class and it is invoked during the creation of the first
instance of the class or the first reference to a static
member in the class.

 A static constructor is used to initialize static fields of the
class and to write the code that needs to be executed
only once.

58

 Points to Remember while creating Static Constructor in C#:
 There can be only one static constructor in a class.

 The static constructor should be without any parameter.

 It can only access the static members of the class.

 There should not be any access modifier in the static constructor
definition.

 If a class is static then we cannot create the object for the static
class.

 Static constructor will be invoked only once i.e. at the time of first
object creation of the class, from 2nd object creation onwards
static constructor will not be called.

59

60

Destructors

 The Destructor is also a special type of method present

in a class, just like a constructor, having the same name

as the class name but prefix with ~ tilde.

 The constructor in C# is called when the object of the

class is created. On the other hand, the destructor in C#

is gets executed when the object of the class is

destroyed.

 The Constructor and destructor methods will exactly

have the same name as the class to which they belong.

So to differentiate between these two a tilde (~)

operator is used before the destructor method.

 A destructor method cannot have any parameters as

well as cannot be applied with any modifiers.

For Eg:

61

62

 A destructor method gets called when the object of the class is destroyed.

 The object of a class in C# will be destroyed by the garbage collector in any of

the following cases

 Case1: At the end of a program execution each and every object that is associated

with the program will be destroyed by the garbage collector.

 Case2: The Implicit calling of the garbage collector occurs sometime in the middle of

the program execution provided the memory is full so that the garbage collector will

identify unused objects of the program and destroys them.

 Case 3: The Explicit calling of the garbage collector can be done in the middle of

program execution with the help of the “GC.Collect()” statement so that if there are

any unused objects associated with the program will be destroyed in the middle of

the program execution.

63

64

65

66

67

68

INHERITANCE

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

13-07-2021

Inheritance
2

 The process of creating a new class from an existing class such that the new

class acquires all the properties and behaviors of the existing class is called

inheritance.

 The properties (or behaviors) are transferred from which class is called the

superclass or parent class or base class whereas the class which derives the

properties or behaviors from the superclass is known as a subclass or child

class or derived class.

 Inheritance is the concept which is used for code reusability and changeability

purpose. Here changeability means overriding the existed functionality or

feature of the object or adding more functionality to the object.

3

 Following is the syntax of implementing an inheritance to define a

derived class that inherits the base class's properties in the c#

programming language.

4

Types of Inheritance
5

Inheritance is classified into 5 types. They are as follows.

 Single Inheritance

 Hierarchical Inheritance

 Multilevel Inheritance

 Hybrid Inheritance

 Multiple Inheritance

 Single Inheritance: When a class is derived from a single base class then the

inheritance is called single inheritance.

 Hierarchical Inheritance: Hierarchical inheritance is the inheritance where

more than one derived class is created from a single base class.

6

 Multilevel Inheritance: When a derived class is created from another
derived class, then that type of inheritance is called multilevel inheritance.

 Hybrid Inheritance: Hybrid Inheritance is the inheritance that is the
combination of any single, hierarchical, and multilevel inheritances.

 Multiple Inheritance: When a derived class is created from more than one
base class then such type of inheritance is called multiple inheritances. But
multiple inheritances are not supported by .NET using classes and can be
done using interfaces.

 Handling the complexity that causes due to multiple inheritances is very
complex. Hence it was not supported in dot net with class and it can be
done with interfaces.

7

 Default Superclass: Except Object class, which has no superclass, every class has
one and only one direct superclass(single inheritance). In the absence of any other
explicit superclass, every class is implicitly a subclass of Object class.

 Superclass can only be one: A superclass can have any number of subclasses. But a
subclass can have only one superclass. This is because C# does not support multiple
inheritance with classes. Although with interfaces, multiple inheritance is supported by
C#.

 Inheriting Constructors: A subclass inherits all the members (fields, methods) from its
superclass. Constructors are not members, so they are not inherited by subclasses, but
the constructor of the superclass can be invoked from the subclass.

 Private member inheritance: A subclass does not inherit the private members of its
parent class. However, if the superclass has properties(get and set methods) for
accessing its private fields, then a subclass can inherit.

8

 In inheritance, the constructor of the parent class must be accessible to its child

class otherwise the inheritance will not possible because when we create the

child class object first it goes and calls the parent class constructor so that the

parent class variable will be initialized and we can consume them under the

child class.

 In inheritance, the child classes can consume the parent class members but the

parent class does not consume child class members that are purely defined in

the child class.

Class members Visibility
9

10

Single Inheritance
11

 Single inheritance enables a derived class to inherit properties and

behavior from a single parent class.

 It allows a derived class to inherit the properties and behavior of a

base class, thus enabling code reusability as well as adding new

features to the existing code.

 This makes the code much more elegant and less repetitive.

 Single inheritance enables a derived class to call the parent class

implementation for a specific method if this method is overridden in the

derived class or the parent class constructor.

12

13

14

15

16

17

18

19

20

21

Multilevel Inheritance
22

 In the Multilevel inheritance, a derived class will inherit a base class and as

well as the derived class also act as the base class to other class.

 For example, three classes called A, B, and C, as shown in the below image,

where class C is derived from class B and class B, is derived from class A.

 In this situation, each derived class inherit all the characteristics of its base

classes. So class C inherits all the features of class A and B.

 In multilevel inheritance the level of inheritance can be extended to any

number of level depending upon the relation.

 Multilevel inheritance is similar to relation between grandfather, father and

child.

23

24

25

Hierarchical inheritance

 Hierarchical inheritance involves

multiple classes inheriting from a

single base class.

 This is quite useful if the features

of the base class are required in

multiple classes.

26

27

28

29

30

31

32

33

Nested Class
34

 When a class is declared with in another class, the inner class is called as Nested class

(i.e. the inner class) and the outer class is known as Enclosing class.

 Nested class can be defined in private as well as in the public section of the Enclosing

class.

 The inner class can act as a helper class to serve the outer class.

 A method in the inner class can access all members including private members of its

outer class.

 A public inner class is accessed within the scope of the outer class.

 The members in an inner class hide the members having the same name in its outer class.

Thus name hiding is possible by nesting blocks or nesting classes.

35

 A nested class can be declared as a private, public, protected, internal,

protected internal, or private protected.

 Outer class is not allowed to access inner class members directly.

 It is possible to create objects of inner class in outer class.

 Inner class can access static member declared in outer class.

 Inner class can access non-static member declared in outer class

36

37

38

39

Constant Members
40

 Constants are immutable values which are known at compile time and do not change
for the life of the program.

 Constants are declared with the const modifier.

 Only the C# built-in types can be declared as const.

 User-defined types, including classes, structs, and arrays, cannot be declared as
const.

 C# does not support const methods, properties, or events.

 It’s mandatory to initialize constant fields with required values during the declaration
itself; otherwise, we will get compile-time errors in our C # application.

 Following is the syntax of defining constant fields using const keyword in c#
programming language.

const data_type field_name = "value";

41

 The following are the different ways of declaring and initializing constant
variables in the c# programming language.

// Constant variables

const string name = "Praveen Sundar";

const string location = "Vellore";

const int age = 18;

public const int Months = 12, Weeks = 52, Days = 365;

public const int Months = 12;

public const int Weeks = 52;

public const int Days = 365;

public const double DaysPerWeek = (double) Days / (double) Weeks;

public const double DaysPerMonth = (double) Days / (double) Months;

Read Only Members
42

 The variable which is declared by using the readonly keyword is known as a read-only

variable.

 The read-only variable’s value cannot be modified once after its initialization.

 It is not mandatory or required to initialize the read-only variable at the time of its

declaration like a constant. You can initialize the read-only variables under a constructor

but the most important point is that once after initialization, you cannot modify the value.

 The behavior of a read-only variable is similar to the behavior of a non-static variable.

That is, it maintains a separate copy for each object. The only difference between these

two is non-static variables can be modified while the read-only variables cannot be

modified.

 A constant variable is a fixed value for the complete class whereas a read-only variable is

a fixed value but specific to one object of the class.

43

44

Properties
45

 In order to encapsulate and protect the data members (i.e. fields), we use properties in

C#.

 The Properties in C# are used as a mechanism to set and get the values of a class

outside of that class.

 If a class contains any value in it and if we want to access those values outside of that

class, then you can provide access to those values in two different ways

 By storing the value under a public variable we can give access to the value outside of the

class.

 By storing that value in a private variable we can also give access to that value outside of

the class by defining a property for that variable.

 A property in C# is a member of a class which is used to set and get the data from a

data field of a class.

46

 Whenever we create a property, the data type of the property must be the
same as the data type of the data field for which we create the property.

 A property can never accept any arguments.

 The most important point that you need to remember is. a property in C# is
never used to store data, it just acts as an interface to transfer the data.

 We use the Properties as they are the public data members of a class, but they
are actually special methods called accessors.

 The Assessors are nothing but special methods which are used to set and get the
values from the underlying data member. Assessors are of two types such as

 set accessor

 get accessor

 The set accessor is used to set the data (i.e. value) into a data field. This set accessor
contains a fixed variable named “value”.

47

 Whenever we call the property to set the data, whatever data (value) we are
supplying that will come and store in the variable “value” by default.

Syntax:

set { Data Field Name = value; }

 The get accessor is used to get the data from the data field. Using this get accessor
you cannot set the data.

Syntax:

get { return Data Field Name; }

 The default accessibility modifier of the accessor is same as the accessibility
modifier of property.

 If the accessibility modifier of the accessors (both get and set) are the same within a
property then the accessors are known as Symmetric accessors.

48

 On the other hand, if the accessibility modifier of the accessors is not the same within
a property then the accessors are known as Asymmetric accessors.

For example:

public int empid

{

protected set { _empid = value; }

get { return _empid; }

}

 The C#.NET supports four types of properties. They are as follows

 Read-only property

 Write only property

 Read Write property

 Auto-implemented property

49

 The Read-only property is used to read the data from the data field.

 Using this property you cannot set the data into the data field. This property

will contain only one accessor i.e. “get” accessor.

Syntax:

AccessModifier Datatype PropertyName { get { return DataFieldName; } }

 The Write-only property is used to write the data into the data field of a

class.

 Using this property you cannot read the data from the data field. This

property will contain only one accessor i.e. set accessor.

Syntax:

AccessModifier Datatype PropertyName { set { DataFieldName = value; } }

50

 The Read-Write property is used for both read the data from the data field as well as write the
data into the data field. This property will contain two accessor i.e. set and get.

Syntax:

AccessModifier DataType PropertyName

{

set

{

DataFieldName = value;

}

get

{

Return DataFieldName;

}

}

51

52

Auto-Implemented Properties in C#
53

 If we do not have any additional logic while setting and getting the data from a
data field then we can make use of the auto-implemented properties which was
introduced in C# 3.0

 The Auto-implemented property reduces the amount of code that we have to write.

 When we use auto-implemented properties, the C# compiler implicitly creates a
private, anonymous field behind the scene which is going to hold the data.

Syntax:

Access specifier Datatype Property name

{

get;

set;

}

 Example: public int A { Get; Set; }

54

55

Need of properties in real-time applications
56

 A good design of a class is achieved by hiding implementation details of the methods and

preventing direct access to data fields. Abstract classes and interfaces help in hiding

implementations. Preventing direct access to the fields is achieved by making the fields private.

 Only by making the fields private the benefits of data integrity do not come automatically.

 The programmer must provide validity checking. Methods that set the values of private data

should verify whether the input values are valid or not. If the values are not proper, the set

method may provide an appropriate value.

 Properties appear to the outside world as fields, but allow processing when their values are

read or modified. They are usually used to modify the behavior at runtime.

 Even though a public set accessor seems to allow other methods to read the data at will, it is

possible to control a new value appropriate for the typical application. The access is restricted

by proper implementation of the accessors by the programmers. Thus the benefits of data

integrity is obtained by providing validity checking in the accessor methods of properties.

57

58

59

60

61

 Advantages of using Properties in C#?

 Properties will provide the abstraction to the data fields.

 They also provide security to the data fields.

 Properties can also validate the data before storing into the data fields.

Indexers
62

 C# indexers are usually known as smart arrays.

 A C# indexer is a class property that allows you to access a member variable

of a class or struct using the features of an array.

 In C#, indexers are created using this keyword.

 Indexers in C# are applicable on both classes and structs.

 Defining an indexer allows you to create a class like that can allows its items

to be accessed an array.

 Instances of that class can be accessed using the [] array access operator.

 C# allows us to define custom indexers, generic indexers, and also overload

indexers.

63

 An indexer can be defined the same way as property with this keyword and

square brackets [].

 Actually an indexer is a special kind of property and includes get and set

accessors to specify its behaviour. Hence, indexers and properties share the

same syntax.

 An indexer is defined in the same way as a property is defined with following

differences:

 The Indexer takes an index argument as its subscript.

 The class itself is being treated as an array and the keyword this is used

as the name of the indexer in the indexer definition.

Syntax
64

<modifier> <return type> this [argument list]

{

get

{

// your get block code

}

set

{

// your set block code

}

}

65

 Indexers are always created with this keyword.

 Indexers are implemented through get and set accessors for the [] operator.

 The formal parameter list of an indexer corresponds to that of a method and at

least one parameter should be specified.

 Indexer is an instance member so can't be static but property can be static.

 Indexer is identified by its signature where as a property is identified it's name.

 Indexers are accessed using indexes where as properties are accessed by names.

 Indexer can be overloaded.

 Indexer are defined in pretty much same way as properties, with get and set

functions. The main difference is that the name of the indexer is the keyword this.

66

67

68

Indexers Properties

Indexers are created with this keyword. Properties don't require this keyword.

Indexers are identified by signature. Properties are identified by their names.

Indexers are accessed using indexes. Properties are accessed by their names.

Indexer are instance member, so can't be static. Properties can be static as well as instance members.

A get accessor of an indexer has the same formal

parameter list as the indexer.
A get accessor of a property has no parameters.

A set accessor of an indexer has the same formal

parameter list as the indexer, in addition to the value

parameter.

A set accessor of a property contains the implicit value

parameter.

Generics
69

 Generic means the general form, not specific. In C#, generic means not specific to a

particular data type. In otherwards, Generics allow you to write a class or method

that can work with any data type. we always write the specifications for the class or

the method, with substitute parameters for data types.

 When the compiler encounters a constructor for the class or a function call for the

method, it generates code to handle the specific data type.

 A generic type is declared by specifying a type parameter in an angle brackets

after a type name, e.g. TypeName<T> where T is a type parameter.

 A type parameter is a placeholder for a particular type specified when creating an

instance of the generic type.

Generic Class
70

 Generic classes are defined using a type parameter in an angle brackets after the class name.

 The following defines a generic class.

 Example: Define Generic Class

class DataStore<T>

{

public T Data { get; set; }

}

 Above, the DataStore is a generic class. T is called type parameter, which can be used as a type
of fields, properties, method parameters, return types, and delegates in the DataStore class.

 For example, Data is generic property because we have used a type parameter T as its type
instead of the specific data type.

 It is not required to use T as a type parameter. You can give any name to a type parameter.
Generally, T is used when there is only one type parameter.

Instantiating Generic Class
71

 You can also define multiple type parameters separated by a comma.

 Example: Generic Class with Multiple Type Parameters

class KeyValuePair<TKey, TValue>

{

public TKey Key { get; set; }

public TValue Value { get; set; }

}

 You can create an instance of generic classes by specifying an actual type in angle brackets. The following

creates an instance of the generic class DataStore.

 DataStore<string> store = new DataStore<string>();

 Above, we specified the string type in the angle brackets while creating an instance. So, T will be replaced with

a string type wherever T is used in the entire class at compile-time. Therefore, the type of Data property would

be a string.

72

73

You can assign a string value to the Data property. Trying to assign values other than string will

result in a compile-time error.

DataStore<string> store = new DataStore<string>();

store.Data = "Hello World!";

//store.Data = 123; //compile-time error

DataStore<string> strStore = new DataStore<string>();

strStore.Data = "Hello World!";

//strStore.Data = 123; // compile-time error

74

DataStore<int> intStore = new DataStore<int>();

intStore.Data = 100;

//intStore.Data = "Hello World!"; // compile-time error

KeyValuePair<int, string> kvp1 = new KeyValuePair<int, string>();

kvp1.Key = 100;

kvp1.Value = "Hundred";

KeyValuePair<string, string> kvp2 = new KeyValuePair<string, string>();

kvp2.Key = "IT";

kvp2.Value = "Information Technology";

75

76

77

Generic Class Characteristics
78

 A generic class increases the reusability. The more type parameters mean more reusable it

becomes. However, too much generalization makes code difficult to understand and maintain.

 A generic class can be a base class to other generic or non-generic classes or abstract classes.

 A generic class can be derived from other generic or non-generic interfaces, classes, or abstract

classes.

 we can create your own generic interfaces, classes, methods, events, and delegates.

 we may create generic classes constrained to enable access to methods on particular data

types.

 we may get information on the types used in a generic data type at run-time by means of

reflection.

Generic Methods
79

 A method declared with the type parameters for its return type or parameters is

called a generic method.

80

 Above, the AddorUpdate() and the GetData() methods are generic methods. The actual
data type of the item parameter will be specified at the time of instantiating the
DataStore<T> class, as shown below.

 The generic parameter type can be used with multiple parameters with or without non-
generic parameters and return type. The followings are valid generic method overloading.

81

 Indexer can also be generic.

 The following generic class includes

generic indexer and properties.

82

83

84

Index overloading
85

 Like functions, Indexers can also be overloaded.

 In C#, we can have multiple indexers in a single class.

 Multiple types allow you to build in flexibility and further increase the fault

tolerance and robustness of the class and application.

 To overload an indexer, declare it with multiple parameters and each

parameter should have a different data type.

 Indexers are overloaded by passing 2 different types of parameters.

 It is quite similar to method overloading.

86

87

88

POLYMORPHISM

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

04-08-2021

2

 Polymorphism is often referred to as the third pillar of object-oriented
programming, after encapsulation and inheritance.

 Polymorphism is a Greek word, meaning "one name many forms".

 In other words, one object has many forms or has one name with multiple
functionalities. "Poly" means many and "morph" means forms/Behaviour.

 Polymorphism provides the ability to a class to have multiple
implementations with the same name.

 Polymorphism can be static or dynamic.

 In static polymorphism, the response to a function is determined at the
compile time.

 In dynamic polymorphism, it is decided at run-time.

3

Static Polymorphism
4

 It is also known as Early Binding or Compile time polymorphism or Static

polymorphism.

 In the case of compile-time polymorphism, the object of class recognizes which

method to be executed for a particular method call at the time of program

compilation and binds the method call with method definition.

 In case of overloading each method will have a different signature and

based on the method call, the compiler can easily recognize the method which

matches the method signature.

 Static polymorphism is achieved by using Function overloading and Operator

overloading.

Function Overloading
5

 It is a process of creating multiple methods in a class with the same name but with

a different signature.

 In C#, It is also possible to overload the methods in the derived classes, which

means, it allows us to create a method in the derived class with the same name as

the method name defined in the base class.

 In simple words, we can say that the Function Overloading in C# allows a class to

have multiple methods with the same name but with a different signature.

 So in C# functions or methods can be overloaded based on the number, type (int,

float, etc.), order, and kind (Value, Ref or Out) of parameters.

 The signature of a method consists of the name of the method and the data type,

number, order, and kind (Value, Ref or Out) of parameters.

6

 If two methods have the same method name those methods are considered
overloaded methods.

 Then the rule we should check is both methods must have different
parameter types/number/order. But there is no rule on return type, non-
accessibility modifier and accessibility modifier means overloading
methods can have their own return type, non-accessibility modifier, and
accessibility modifier because overloading methods are different methods.

 Methods can be overloaded in the same or in super and sub classes
because overloaded methods are different methods.

 A method that is defined in a class can also be overloaded under its child
class. It is called inheritance-based overloading.

7

8

9

Operator Overloading
10

 C# supports a number of operators, all these operators have predefined

implementations.

 The operands of most of these operators are of primitive datatypes.

 If an operator has a user defined implementation, the operator is said to be

overloaded.

 The existing C# operator redefined for use with user-defined types is called as

Operator Overloading.

 In fact, the overloaded operator is simply another means of calling a method. It

does not add anything new to the language. It helps in operator abstraction.

 Overloaded operators are functions with special names the keyword operator

followed by the symbol for the operator being defined.

Operator Overloading
11

 Similar to any other function, an overloaded operator has a return type and a
parameter list.

 Operator is the keyword which is used to implement operator overloading. The
return type of operator overload can never be void.

 In operator overloading preference is always given to user-defined implementations
rather than predefined implementations.

 In user-defined implementations, syntax and precedence cannot be modified.

 We can overload all the binary operators i.e +, -, *, /, %, &, |, <<, >>.

 We can overload all the unary operators i.e. ++, –, true, false, + , -, ~.

 Some operators like &&, ||,[] ,() cannot be overloaded.

 We can overload relational operators in pairs. These are ==, =, <, >, <= , >= etc.

 When binary operators are overloaded, the left hand object must be an object of the relevant
class

12



13

14

15

16

17

18

1. The virtual keyword is used to modify a method, property, indexer, or event

declared in the base class and allow it to be overridden in the derived class.

2. The override keyword is used to extend or modify a virtual/abstract method,

property, indexer, or event of base class into derived class.

3. The new keyword is used to hide a method, property, indexer, or event of

base class into derived class.

Method Overriding
19

 In C#, The process of re-implementing the base class non-static method in the
subclass with the same prototype (same signature defined in the superclass) is called
Function Overriding or Method Overriding.

 In C#, the Method Overriding is also called run time polymorphism or late binding.

 The Method Overriding in C# can be achieved using Override & Virtual keywords
and the inheritance principle.

 The implementation of the subclass overrides (i.e. replaces) the implementation of
base class methods.

 The overriding method is always going to be executed from the current class object.

 If a method in sub-class contains the same signature as the base class non-private
non-static method, then the subclass method is treated as the overriding method and
the superclass method is treated as the overridden method.

20

 To override a parent class method in its child class, first the method in the parent
class must be declared as virtual by using the keyword virtual, then only the child
classes get the permission for overriding that method.

 Declaring the method as virtual is marking the method as overridable. If the child
class wants to override the parent class virtual method then the child class can do it
with the help of the override modifier. But overriding the method under child class is
not mandatory for the child classes.

Syntax:

Class1:

Public virtual void show(){} //virtual function (overridable)

Class2: Class1

Public override void show(){} //overriding

21

 Once we re-implement the parent class methods under the child class, then the

object of the child class calls its own methods but not its parent class method.

 if you want to still consume or call the parent class’s methods from the child

class, then it can be done in two different ways.

 By creating the parent class object under the child class, we can call the

parent class methods from the child class, or by using the base keyword, we

can call parent class methods from the child class.

22

23

24

25

26

27

28

Method Overloading Method Overriding

It is an approach of defining multiple methods with the
same name but with a different signature.

It is an approach of defining multiple methods with the
same name and with the same signature.

Overloading a method can be performed within a class or
within the child classes also.

Overriding of methods is not possible within the same
class it must be performed under the child classes.

To overload a parent class method under the child class,
the child class does not require permission from the
parent.

To override a parent class method under the child class,
first, the child class requires explicit permission from its
parent.

This is all about defining multiple behaviors to a method. This is all about changing the behavior of a method.

Used to implement static polymorphism. Used to implement dynamic polymorphism.

This is a code refinement technique. This is a code replacement technique.

No separate keywords are used to implement function
overloading.

Use the virtual keyword for the base class function and
override keyword in the derived class function to
implement function overriding.

Method Hiding
29

 C# also provides a concept to hide the methods of the base class from derived class, this
concept is known as Method Hiding. It is also known as Method Shadowing. In method hiding, you
can hide the implementation of the methods of a base class from the derived class using the new
keyword.

 Usually, we will get a compiler warning if we miss the new keyword. This is also used for re-
implementing a parent class method under child class.

 Reimplementing parent class methods under child classes can be done using two different
approaches, such as

 Method overriding

 Method hiding

 In the first case, we re-implement the parent class methods under child classes with the
permission of parent class because here in parent class the method is declared as virtual giving
permission to the child classes for overriding the methods.

 In the 2nd approach, we re-implement the method of parent class even if those methods are not
declared as virtual that is without parent permission we are reimplementing the methods.

30

31

32

33

Abstract Class
34

 A class that is declared by using the keyword abstract is called an abstract

class.

 An abstract class is a partially implemented class used for developing some

of the operations of an object which are common for all next level subclasses.

So it contains both abstract methods, concrete methods including variables,

properties, and indexers.

 An abstract class may or may not have abstract methods. But if a class

contains an abstract method then it must be declared as abstract.

 An abstract class cannot be instantiated directly. It’s compulsory to

create/derive a subclass from the abstract class in order to provide the

functionality to its abstract functions.

35

 The purpose of an abstract class is to provide a common definition of a base class

that multiple derived classes can share. For example, a class library may define an

abstract class that is used as a parameter to many of its functions, and require

programmers using that library to provide their own implementation of the class by

creating a derived class.

 Abstract classes may also define abstract methods. This is accomplished by adding

the keyword abstract before the return type of the method.

36

 Abstract methods are usually declared where two or more subclasses are

expected to fulfill a similar role in a different manner.

 The subclasses are required to fulfill an interface, so the abstract superclass

might provide several of the interface methods, but leave the subclasses to

implement their own variations of the abstract methods.

 A method that does not have a body is called an abstract method. It is

declared with the modifier abstract. It contains only a Declaration/signature

and does not contain the implementation/body/definition of the method.

 An abstract function should be terminated with a semicolon. Overriding an

abstract function is compulsory.

Rules of Abstract Method and Abstract Class
37

 Rule1: If a method does not have the body, then it should be declared as

abstract using the abstract modifier else it leads to a compile-time error:

“must declare a body because it is not marked abstract, extern, or partial”.

 Rule2: If a class has an abstract method it should be declared as abstract by

using the keyword abstract else it leads to a compile-time error:

 Rule3: If a class is declared as abstract it cannot be instantiated violation

leads to compile-time Error.

 Rule4: The sub-classes of an abstract class should override all the abstract

methods or it should be declared as abstract else it leads to the compile-time

error:

38

39

40

41

42

43

44

Differences between overriding methods and abstract methods
45

 The concept of the abstract method is near similar to the concept of method

overriding because in method overriding if a Parent class contains any virtual

methods in it, then those methods can be re-implemented under the child class

by using the override modifier.

 In a similar way, if a parent class contains any abstract methods in it, those

abstract methods must be implemented under the child class by using the same

override modifier.

 The main difference between method overriding and abstract method is in the

case of method overriding the child class re-implementing the method is

optional but in the case of the abstract method, the child class implementing

the method is mandatory.

Sealed Class & Methods
46

 In C#, sealed is a keyword used to stop inheriting the particular class from other

classes.

 Based on our requirements, it is possible to prevent overriding the particular

properties or methods.

 Generally, while creating a particular class it is possible to inherit all the

properties and methods in any class.

 If we want to restrict access to a defined class and its members, then by using a

sealed keyword, we can prevent other classes from inheriting the defined class.

 In C#, a sealed class can define by using a sealed keyword.

 In C#, if we define a class with the sealed keyword, then we don’t have a

chance to inherit that particular class.

Points to be considered
47

 A sealed class is completely opposite to an abstract class.

 This sealed class cannot contain abstract methods.

 It should be the bottom-most class within the inheritance hierarchy.

 A sealed class can never be used as a base class.

 The sealed class is specially used to avoid further inheritance.

 The keyword sealed can be used with classes, instance methods, and

properties.

 Even if a sealed class cannot be inherited we can still consume the class

members from any other class by creating the object of the class.

Sealed Methods in C#

 In C#, we can also use the sealed keyword on a method or property that overrides
a virtual method or property in a base class to allow other classes to derive from the
base class and prevent them from overriding specific virtual methods or properties.

 If we don’t want to allow subclasses to override the base class method and to
ensure that all sub-classes use the same base class method logic then that
method should be declared as sealed.

 The sealed method cannot be overridden in sub-classes violation leads to a
compile-time error.

 The private method is not inherited whereas the sealed method is inherited but
cannot be overridden in C#. So, a private method cannot be called from sub-
classes whereas a sealed method can be called from sub-classes.

ABSTRACT CLASS SEALED CLASS

A class that contains one or more abstract methods is known as

an abstract class.

A class from which it is not possible to derive a new class is

known as a sealed class.

The abstract class can contain abstract and non-abstract

methods.

The sealed class can contain non-abstract methods; it cannot

contain abstract and virtual methods.

Creating a new class from an abstract class is compulsory to

consume.
It is not possible to create a new class from a sealed class.

An abstract class cannot be instantiated directly; we need to

create the object for its child classes to consume an abstract

class.

We should create an object for a sealed class to consume its

members.

We need to use the keyword abstract to make any class

abstract.

We need to use the keyword sealed to make any class as

sealed.

An abstract class cannot be the bottom-most class within the

inheritance hierarchy.

The sealed class should be the bottom-most class within the

inheritance hierarchy.

Partial Class and Methods

 Partial Classes are the new feature that has been added in C# 2.0 which allows us to

define a class on multiple files i.e. we can physically split the content of the class into

different files but even physically they are divided but logically it is one single unit only.

 A class in which code can be written in two or more files is known as a partial class.

 To make any class partial we need to use the keyword partial.

 Partial classes allow us to split a class definition into 2 or more files.

 It is also possible to split the definition of a struct or an interface over two or more

source files.

 Each source file will contain a section of the class definition, and all parts are combined

into a single class when the application is compiled.

Rules for Partial Classes

 All the partial class definitions must be in the same assembly and namespace.

 All the parts must have the same accessibility like public or private, etc.

 If any part is declared abstract, then the whole type is considered abstract.

 If any part is declared sealed, then the whole type is considered sealed.

 If any part declares a base type, then the whole type inherits that class.

 Any class member declared in a partial definition are available to all other parts.

 Different parts can have different base types and so the final class will inherit all

the base types.

 The Partial modifier can only appear immediately before the keywords class, struct,

or interface.

Partial Methods

 A partial class may contain a partial method.

 One part of the class contains the signature of the method.

 An optional implementation may be defined in the same part or another part.

 If the implementation is not supplied, then the method and all calls are

removed at compile time.

 The implementation can be provided in the same physical file or in another

physical file that contains the partial class.

Interface
66

 The Interface in C# is a fully un-implemented class used for declaring a set of

operations of an object. So, we can define an interface as a pure abstract class

which allows us to define only abstract methods. The abstract method means a

method without body or implementation.

 An interface is defined as a syntactical contract that all the classes inheriting the

interface should follow. The interface defines the 'what' part of the syntactical

contract and the deriving classes define the 'how' part of the syntactical contract.

 In C#, the interface is same as a class, but the only difference is class can contain

both declarations and implementation of methods, properties, and events, but the

interface will contain only the declarations of methods, properties, and events

that a class or struct can implement.

67

 The class or struct that implements an interface must provide an implementation for

all the members specified in the interface definition.

 Generally, C# will not support multiple inheritance of classes, but that can achieve

by using an interface.

 Also, a structure in C# cannot be inherited from another structure or class, but that

can inherit by using interfaces.

 If we define an abstract class in place of an interface, a service provider cannot

implement multiple specifications so that the service provider cannot have multiple

businesses.

 In C#, we can define an interface by using interface keyword.

68

 Following is the example of defining an interface using interface

keyword.

69

 Here the keyword interface tells that Example is an interface containing one abstract

method i.e. show().

 By default, the members of an interface are public and abstract.

 An interface can contain

 Abstract methods

 Properties

 Indexes

 Events

 An interface cannot contain

 Non-abstract functions

 Data fields

 Constructors

 Destructors

70

While working with an interface, we must follow the below rules.

 The interface cannot have concrete methods, violation leads to Compilation Error: interface
methods cannot have a body.

 We cannot declare interface members as private or protected members violation leads to
Compilation Error :”

 An interface cannot be instantiated but its reference variable can be created for storing its
subclass object reference.

 We cannot declare the interface as sealed it leads to Compilation Error : “illegal
combination of modifier interface and final”.

 The class derived from the interface should implement all abstract methods of the interface
otherwise it should be declared as abstract else it leads to a compile-time error.

 The subclass should implement the interface method with public keyword because interface
methods default accessibility modifier is public.

 In an interface, we cannot create fields, variable violation leads to a compile-time error.

71

 An interface is different from a class in the following ways:

 We cannot instantiate an interface.

 An interface does not contain any constructor or data fields or destructor, etc.

 All of the methods of an interface are abstract and public by default.

 An interface is not extended by a class; it is implemented by a class.

 An interface can extend multiple interfaces.

 An interface is similar to an abstract class in the following ways

 Both interface and the abstract class cannot be instantiated means we cannot create the
object.

 But we can create a reference variable for both interface and abstract class.

 The subclass should implement all abstract methods.

 Both cannot be declared as sealed.

72

73

74

75

Abstract class Interface

It is a partially implemented class. It allows us to define

both concrete and abstract methods.

It is a fully un-implemented class. It allows us to define only

abstract methods.

It provides both reusability and forcibility It provides the only forcibility

It should be declared as abstract by using the abstract

keyword, abstract methods should also contain the

abstract keyword.

It should be created by using the keyword interface. Declaring its

methods as abstract is optional because by default the methods

of an interface are abstract.

A class that contains one or more abstract functions is

called abstract class.

The class which contains all the abstract functions is known as an

interface.

Its member’s default accessibility modifier is private and

can be changed to any of the other accessibility

modifiers.

Its member’s default accessibility modifier is public and cannot

be changed.

It is possible to declare data fields in an abstract class. But it is not possible to declare any data fields in an interface.

An abstract class can contain the non-abstract function. An interface cannot contain non-abstract functions.

An abstract class can inherit from another abstract class

or from an interface.

An interface can inherit from only other interfaces but cannot

inherits from the abstract class.

An abstract class cannot be used to implement multiple

inheritances.
An interface can be used to implement multiple inheritances.

Abstract class members can have access modifiers. Interface members cannot have access modifiers.

Multiple Inheritance
76

 n Multiple inheritance, one class can have more than one superclass
and inherit features from all its parent classes.

 C# doesn't allow multiple inheritance with classes but it can be
implemented using interface. The reason behind is:

 Multiple inheritance add too much complexity with little benefit.

 There are huge chances of conflicting base class member. For example,
if there is a method calculate() in two base class and both are doing
different calculation. What happened if user call calculate() in child
class? Which method will work?

 Inheritance with Interface provides same job of multiple inheritance.

 Multiple Inheritance inject a lots of burden into implementation and it
cause slow program execution.

77

78

 An interface can inherit from one or more other interfaces.

 An interface inherits all members of its base interfaces.

 A class that implements an interface also implicitly all of the interface’s base

interfaces.

 The Syntax for multiple inheritance of an interface varies only in the interface

implementation as given below.

accessModifier class ClassName: baselist

{

Method implementation

Member declarations of the class

Public static void Main()

{………….}

}

79

 The list of interfaces following the colon(:) in the class declaration is known as

baselist.

 It is possible to include only one class in the baselist.

 When the baselist of a class contains a base class and interfaces, the base

class must be written first in the base list.

 Maximum of one class and any number of interfaces are allowed in the

baselist.

80

81

DELEGATES

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

12-08-2021

83

 The dictionary of delegate is "a person acting for another person". In C#, it really
means a method acting for another method.

 A delegate is another reference type introduced in C#.

 An instance of a delegate encapsulates a reference to a method.

 A delegate refers to either an instance method or a static method.

 Delegates always refer to methods. They are defined at run-time.

 By using a delegate, a method may be passed as an argument to another method.
A method that is passed to another method as an argument is called a callback
method or callback function.

 Callback functions are used to pass a function as an argument in other languages.

 A delegate can be declared in a class or an interface

 All delegates are implicitly derived from the System.Delegate class.

84

 Creating and using delegates involve four steps. They include:

 Delegate Declaration

 Delegate Method Definition

 Delegate Instantiation

 Delegate Invocation

 Delegates methods are any functions(defined in a class) whose signatures
matches the delegate signature exactly.

 The delegate instance holds the reference to the delegate methods.

 The instance is used to invoke the methods indirectly.

 An important feature if a delegate is that it can be used to hold reference
to a method of any class. The only requirement is that its signature must
match the signature of the method.

Rules of using Delegates in C#
85

 A delegate in C# is a user-defined type and hence before invoking a method

using a delegate, we must have to define that delegate first.

 The signature of the delegate must match the signature of the method, the

delegate points to otherwise we will get a compiler error. This is the reason

why delegates are called type-safe function pointers.

 A Delegate is similar to a class. This means we can create an instance of a

delegate and when we do so, we need to pass the method name as a

parameter to the delegate constructor, and it is the function the delegate will

point to

 Delegates syntax looks very much similar to a method with a delegate

keyword.

Declaration of Delegate
86

 A delegate can be declared using the delegate keyword followed by a function signature,
as shown below.

 Where

modifier represents public, protected, internal, private and new.

delegate is the keyword representing the declaration as a delegate.

return type indicates the return type of the delegate

Delegate name is any valid identifier and is the name of the delegate that will be used to instantiate
delegate objects.

Parameters identifies the signature of the delegate

87

 The new modifier is only permitted on delegates declared within another type, in

which case it specifies that such a delegate hides an inherited member by the same

name.

 The method to be passed must be declared as a normal method with the same

return type and parameter list. It can be either static or instance method.

 Since it is a class type, it can be defined in any place where a class definition is

permitted. That is, a delegate may be defined in the following places:

 Inside a class

 Outside all classes

 As the top level object in a namespace

Depending on how visible we want the delegate to be, we can apply any of the

visibility modifiers to the delegate definition.

Instantiation & Invocation of Delegates
88

 Once a delegate type is declared, a delegate object must be created with the new keyword
and be associated with a particular method.

 When creating a delegate, the argument passed to the new expression is written similar to a
method call, but without the arguments to the method. This is known as invoking the delegate.

 Syntax:

[delegate_name] [instance_name] = new [delegate_name](expression);

 The delegate-name is the name of the delegate declared earlier whose object is to be
created .

 The expression must be a method name or a value of a delegate-type.

 If it is a method name its signature and return type must be the same as those of the
delegate.

 If no matching method exists, or more than one matching method exists, an error occurs.

89

 The matching method may be either an instance method or a static method.

 If it is an instance method, we need to specify the instance as well as the
name of the method.

 If it is a static one, then it is enough to specify the class name and the
method name.

 The method and the object to which a delegate refers are determined
when the delegate is instantiated and then remain constant for the entire
lifetime of the delegate. It is, therefore, not possible to change them, once
the delegate is created.

 It is also not possible to create a delegate that would refer to a
constructor, indexer, or user-defined operator.

Invoking a delegate
90

 C# uses a special syntax for invoking a delegate.

 A delegate can be invoked using the Invoke() method or using the () operator.

 When a delegate is invoked, it in turn invokes the method whose reference has been
encapsulated into the delegate, (only if their signatures match).

 Invocation takes the following form:

delegate_object (parameters list)

 The optional parameters list provides values for the parameters of the method to be
used.

 If the invocation invokes a method that returns void, the result is nothing and
therefore it cannot be used as an operand of any operator. It can be simply a
statement_expression.

91

92

93

94

95

Types of Delegates
96

 The Delegates in C# are classified into two types such as

 Single Cast Delegate: If a delegate is used for invoking a single method then it is
called a single cast delegate or unicast delegate. In other words, we can say that
the delegates that represent only a single function are known as single cast
delegates.

 Multicast Delegate: If a delegate is used for invoking multiple methods then it is
known as the multicast delegate. Or the delegates that represent more than one
function are called Multicast delegates.

 Delegate objects can be composed using the "+" operator. A composed delegate
calls the two delegates it was composed from. Only delegates of the same type can
be composed. The "-" operator can be used to remove a component delegate from
a composed delegate.

 Using this property of delegates you can create an invocation list of methods that
will be called when a delegate is invoked. This is called multicasting of a delegate.

97

98

99

Events
100

 Events are nothing just a user action. For example

 When you click with the mouse – It is mouse click events.

 When you press any key in keyboard – It is KeyPress events

 When you refresh your webpage – It is page load events

 When you move mouse cursor – It is mouse hover events etc.

 So when you take any action like a key press, mouse movements, clicks etc
an event raised. Let me clear more about it. For example, you filled an
online form and click on submit button.

 In the background button_click() event raised.

 This event calls and execute an associated function Submit_Click().

 This function processes your request and submits page information to database.

101

 In C#, the event is a message sent by an object to indicate that particular action will

happen. The action could be caused either by a button click, mouse movements, or

other programming logic. The object that raises an event is called an event sender.

 In simple words, we can say that events are used to signal user actions such as button

click, mouse over, menu selection, etc., to the user interface.

 The class who raises events is called Publisher, and the class who receives the

notification is called Subscriber. There can be multiple subscribers of a single event.

Typically, a publisher raises an event when some action occurred. The subscribers,

who are interested in getting a notification when an action occurred, should register

with an event and handle it.

 In C#, an event is an encapsulated delegate. It is dependent on the delegate. The

delegate defines the signature for the event handler method of the subscriber class.

102

103

 In C#, events are used to enable a class or object to notify other classes or objects

about the action that is going to happen.

 To declare an event, we need to use event keyword with delegate type.

 An Event has no return type and it is always void.

 All events are based on delegates.

 All the published events must have a listening object.

 Before raising an event, we need to check whether an event is subscribed or not.

 By using += operator, we can subscribe to an event, and by using -= operator, we

can unsubscribe from an event.

 To raise an event, we need to invoke the event delegate.

104

 To respond to an event, we can define an event handler method in the event

receiver, and the handler method must have the same signature of delegate in the

event.

 To raise events, there must be subscribers; otherwise, they won’t be raised.

 In C#, an event can have multiple subscribers, and a subscriber can handle multiple

events from multiple publishers.

 In case an event has multiple subscribers, then event handlers are invoked

synchronously when an event is raised.

 In C#, the publisher determines when an event is raised, and the subscriber

determines what action is taken in response to the event.

 In .NET Framework, events are based on EventHandler delegate and an EventArgs

base class.

Events Declaration
105

 In C#, events are the encapsulated delegates, so first, we need to define a

delegate before we declare an event inside of a class by using event

keyword.

Modifier event delegateType eventVariable

Where

 Modifier maybe new public, protected, private, internal, static, virtual, sealed, override,

abstract.

 Event is a keyword representing an event declaration

 delegateType represents an event declaration

 eventVariable represents an identifier to the name of the event.

106

Keyword Description

static Makes the event available to callers at any time, even if no instance of the class exists.

virtual Allows derived classes to override the event behavior by using the override keyword.

sealed Specifies that for derived classes it is no longer virtual.

abstract
The compiler will not generate the add and remove event accessor blocks and therefore derived classes must

provide their own implementation.

107

 To respond to an event, we need to define an event handler method in the

event receiver, and this method signature must match with the event delegate's

signature.

 In the event handler, you can perform actions that are required whenever the

event is raised, such as getting the user input after a click on the button.

108

109

110

Built in Delegates in C#
111

 Microsoft provides two built in delegates to work with.

public delegate void EventHandler(object sender, EventArgs e);

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);

 These built in delegates helps you to write event handling code with ease.

 With these delegates you can pass one or more than one value to event

handler.

 When you raise event you must follow the discipline and pass required

parameters to delegates.

112

EXCEPTION HANDLING

II MCA

Dr P.V. Praveen Sundar

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

17-08-2021

Exceptions
114

 When we write and execute our code in the .NET framework then there is a
possibility of two types of error occurrences they are

 Compilation errors

 Runtime errors

 The error that occurs in a program at the time of compilation is known as compilation
error (compile-time error).

 These errors occur due to the syntactical mistakes under the program. That means
these errors occur by typing the wrong syntax like missing double quotes and
terminators, typing wrong spelling for keywords, assigning wrong data to a
variable, trying to create an object for abstract class and interface, etc.

 Usually, this type of error occurs due to a poor understanding of the programming
language. These errors can be identified by the programmer and can be rectified
before the execution of the program only. So these errors do not cause any harm to
the program execution.

115

 The errors which are occurred at the time of program execution are called the
runtime error.

 These errors occurred when we are entering wrong data into a variable,
trying to open a file for which there is no permission, trying to connect to the
database with the wrong user id and password, the wrong implementation of
logic, missing required resources, etc.

 A runtime error is known as an exception in C#. The exception will cause the
abnormal termination of the program execution.

 Runtime errors are dangerous because whenever they occur in the program,
the program terminates abnormally on the same line where the error gets
occurred without executing the next line of code.

116

 Objects of exception classes are responsible for abnormal termination of the

program whenever runtime errors (exceptions) occur.

 These exception classes are predefined under BCL (Base Class Libraries) where

a separate class is provided for each and every different type of exception.

 After abnormal termination of the program exception classes will be displaying

an error message which specifies the reason for abnormal termination. So,

whenever a runtime error (exception) occurs in a program, first the exception

manager under the CLR (Common Language Runtime) identifies the type of

error that occurs in the program, then creates an object of the exception class

related to that error and throws that object which will immediately terminate the

program abnormally on the line where error got occur and display the error

message related to that class.

117

Exception Handling
118

 Exception handling is a mechanism to detect and handle run time errors.

 It is achieved by using try-catch-finally blocks and throw keyword.

 Once we handle an exception under a program we will be getting the following advantages

 We can stop the abnormal termination

 We can perform any corrective action that may resolve the problem.

 Displaying a user-friendly error message, so that the user can resolve the problem provided if it is under his
control.

 try: The try keyword establishes a block in which we need to write the exception causing and its
related statements. That means exception-causing statements must be placed in the try block so that
we can handle and catch that exception for stopping abnormal termination and to display end-user
understandable messages.

 Catch: The catch block is used to catch the exception that is thrown from its corresponding try block. It
has the logic to take necessary actions on that caught exception. The Catch block syntax in C# looks
like a constructor. It does not take accessibility modifier, normal modifier, return type. It takes the only
single parameter of type Exception. Inside catch block, we can write any statement which is legal in
.NET including raising an exception.

119

 Finally: The keyword finally establishes a block that definitely executes statements placed in it.

Statements that are placed in finally block are always going to be executed irrespective of the

way the control is coming out from the try block either by completing normally or throwing an

exception by catching or not catching.

 A try block must be followed by catch or finally or both blocks. The try block without a catch or

finally block will give a compile-time error.

 A catch block should include a parameter of a built-in or custom exception class to get an error

detail. The following includes the Exception type parameter that catches all types of exceptions.

 You can use multiple catch blocks with the different exception type parameters. This is called

exception filters. Exception filters are useful when you want to handle different types of exceptions

in different ways.

120

 Once we use the try and catch blocks in our code the execution takes place
as follows:

 If all the statements under try block are executed successfully, from the last
statement of the try block, the control directly jumps to the first statement that is
present after the catch block (after all catch blocks) without executing catch
block (it means there is no runtime error in the code at all).

 Then if any of the statements in the try block causes an error, from that statement
without executing any other statements in the try block, the control directly jumps
to the catch blocks which can handle that exception.

 If a proper catch block is found that handles the exception thrown by the try
block, then the abnormal termination stops there, executes the code under the
catch block, and from there again it jumps to the first statement after all the
catch blocks.

 If a matching catch is not found then abnormal termination occurs.

121

122

123

124

125

126

Properties of Exception Class in C#
127

 The C# Exception Class has 3 properties are as follows:

 Message: This property will store the reason why an exception has occurred.

 Source: This property will store the name of the application from which the exception has been
raised.

 Help link: This is used to provide a link to any file /URL to give helpful information to the user
when an exception is raised.

User-defined Exceptions

 An exception that is raised explicitly under a program based on our own condition
(i.e. user-defined condition) is known as an application exception. As a programmer,
we can raise application exception at any given point of time.

 In C#, it is possible to create our own exception class. But Exception must be the
ultimate base class for all exceptions in C#. So the user-defined exception classes
must inherit from either Exception class or one of its standard derived classes.

128

 The throw statement throws an exception. The syntax is given below

Throw expression

Where,

 Throw is a keyword

 Expression denotes a value of a class type System.Exception or a class that is

derived from System.Exception.

 An expression arises through statement in the called method.

129

130

