
PROGRAMMING IN C

- I CS

Dr P.V. Praveen Sundar,

Assistant Professor,

Department of Computer Science

Adhiparasakthi College of Arts & Science,

Kalavai.

23-01-2021

Introduction
2

 C is a general-purpose, high-level language that was originally developed by
Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. C was
originally first implemented on the DEC PDP-11 computer in 1972.

 In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K&R standard.

 The UNIX operating system, the C compiler, and essentially all UNIX application
programs have been written in C.

 C has now become a widely used professional language for various reasons −

 Easy to learn

 Structured language

 It produces efficient programs

 It can handle low-level activities

 It can be compiled on a variety of computer platforms.

Facts about C
3

 C was invented to write an operating system called UNIX.

 C is a successor of B language which was introduced around the early
1970s.

 The language was formalized in 1988 by the American National Standard
Institute (ANSI).

 The UNIX OS was totally written in C.

 Today C is the most widely used and popular System Programming
Language.

 Most of the state-of-the-art software have been implemented using C.

 Today's most popular Linux OS and MySQL have been written in C.

Origin of C
4

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Features
5

C is the widely used language. It provides many features that are given below.

 Simple

 Machine Independent or Portable

 Mid-level programming language

 Structured programming language

 Rich Library

 Memory Management

 Fast Speed

 Pointers

 Recursion

 Extensible

C Program Basics
6

C is a structured
programming
language. Every
c program and
its statements
must be in a
particular
structure. Every
c program has
the following
general
structure...

7

 Line 1: Comments - They are ignored by the compiler

 This section is used to provide a small description of the
program. The comment lines are simply ignored by the
compiler, that means they are not executed. In C, there are
two types of comments.
 Single Line Comments: Single line comment begins with // symbol.

We can write any number of single line comments.

 Multiple Lines Comments: Multiple lines comment begins with /*
symbol and ends with */. We can write any number of multiple
lines comments in a program.

8

 In a C program, the comment lines are optional. Based on the requirement,
we write comments. All the comment lines in a C program just provide the
guidelines to understand the program and its code.

 Line 2: Preprocessing Commands

 Preprocessing commands are used to include header files and to define
constants. We use the #include statement to include the header file into our
program. We use a #define statement to define a constant. The
preprocessing statements are used according to the requirements. If we
don't need any header file, then no need to write #include statement. If we
don't need any constant, then no need to write a #define statement.

9

Line 3: Global Declaration

 The global declaration is used to define the global variables, which are
common for all the functions after its declaration. We also use the global
declaration to declare functions. This global declaration is used based on
the requirement.

Line 4: int main()

 Every C program must write this statement. This statement (main) specifies
the starting point of the C program execution. Here, main is a user-defined
method which tells the compiler that this is the starting point of the
program execution. Here, int is a data type of a value that is going to
return to the Operating System after completing the main method
execution. If we don't want to return any value, we can use it as void.

10

Line 5: Open Brace ({)

 The open brace indicates the beginning of the block which belongs to the main
method. In C program, every block begins with a '{' symbol.

Line 6: Local Declaration

 In this section, we declare the variables and functions that are local to the function or
block in which they are declared. The variables which are declared in this section
are valid only within the function or block in which they are declared.

Line 7: Executable statements

 In this section, we write the statements which perform tasks like reading data,
displaying the result, calculations, etc., All the statements in this section are written
according to the requirements.

Line 8: Return Statement

 Return Statement will returns the value to the operating system.

11

Line 9: Closing Brace (})

 The close brace indicates the end of the block which belongs to the
main method. In C program every block ends with a '}' symbol.

Line 10, 11, 12, ...: User-defined function()

 This is the place where we implement the user-defined functions. The
user-defined function implementation can also be performed
before the main method. In this case, the user-defined function need
not be declared. Directly it can be implemented, but it must be
before the main method. In a program, we can define as many
user-defined functions as we want. Every user-defined function
needs a function call to execute its statements.

12

General rules for any C program

 Every executable statement must end with a semicolon symbol (;).

 Every C program must contain exactly one main method (Starting
point of the program execution).

 All the system-defined words (keywords) must be used in lowercase
letters.

 Keywords can not be used as user-defined names(identifiers).

 For every open brace ({), there must be respective closing brace (}).

 Every variable must be declared before it is used.

C Character Set
13

 As every language contains a set of characters used to construct words,
statements, etc., C language also has a set of characters that include
alphabets, digits, and special symbols. C language supports a total of 256
characters.

 Every C program contains statements. These statements are constructed
using words and these words are constructed using characters from the C
character set. C language character set contains the following set of
characters.

 Alphabets

 Digits

 Special Symbols

14

Alphabets

 C language supports all the alphabets from the English language. Lower and upper case letters
together support 52 alphabets.

 lower case letters - a to z

 UPPER CASE LETTERS - A to Z

Digits

 C language supports 10 digits which are used to construct numerical values in C language.

 Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

 C language supports a rich set of special symbols that include symbols to perform
mathematical operations, to check conditions, white spaces, backspaces, and other special
symbols.

 Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ | tab newline space NULL
bell backspace vertical tab etc.,

15

Creating and Running C Program
16

 Generally, the programs created using programming languages like C, C++, Java, etc.,

are written using a high-level language like English. But, the computer cannot understand

the high-level language. It can understand only low-level language. So, the program

written in the high-level language needs to be converted into the low-level language to

make it understandable for the computer. This conversion is performed using either

Interpreter or Compiler.

 Popular programming languages like C, C++, Java, etc., use the compiler to convert

high-level language instructions into low-level language instructions.

 A compiler is a program that converts high-level language instructions into low-level

language instructions. Generally, the compiler performs two things, first it verifies the

program errors, if errors are found, it returns a list of errors otherwise it converts the

complete code into the low-level language.

17

18

Step 1: Creating a Source Code

 Source code is a file with C programming instructions in a high-level language. To
create source code, we use any text editor to write the program instructions. The
instructions written in the source code must follow the C programming language rules.
The following steps are used to create a source code file in Windows OS…

 Click on the Start button

 Select Run

 Type cmd and press Enter

 Type cd c:\TC\bin in the command prompt and press Enter

 Type TC press Enter

 Click on File -> New in C Editor window

 Type the program

 Save it as FileName.c (Use shortcut key F2 to save)

19

Step 2: Compile Source Code (Alt + F9)

 The compilation is the process of converting high-level language instructions into low-
level language instructions. We use the shortcut key Alt + F9 to compile a C
program in Turbo C.

 The compilation is the process of converting high-level language instructions into low-
level language instructions.

 Whenever we press Alt + F9, the source file is going to be submitted to the
Compiler. On receiving a source file, the compiler first checks for the Errors. If there
are any Errors then compiler returns List of Errors, if there are no errors then the
source code is converted into object code and stores it as a file with .obj extension.
Then the object code is given to the Linker. The Linker combines both the object code
and specified header file code and generates an Executable file with a .exe
extension.

20

Step 3: Executing / Running Executable File (Ctrl + F9)

 After completing compilation successfully, an executable file is created with
a .exe extension. The processor can understand this .exe file content so that
it can perform the task specified in the source file.

 We use a shortcut key Ctrl + F9 to run a C program. Whenever we press
Ctrl + F9, the .exe file is submitted to the CPU. On receiving .exe file, CPU
performs the task according to the instruction written in the file. The result
generated from the execution is placed in a window called User Screen.

Step 4: Check Result (Alt + F5)

 After running the program, the result is placed into User Screen. Just we
need to open the User Screen to check the result of the program execution.
We use the shortcut key Alt + F5 to open the User Screen and check the
result.

Execution Process of a C Program
21

22

Overall Process

 Type the program in C editor and save with .c extension (Press F2 to save).

 Press Alt + F9 to compile the program.

 If there are errors, correct the errors and recompile the program.

 If there are no errors, then press Ctrl + F9 to execute/run the program.

 Press Alt + F5 to open User Screen and check the result.

C Tokens
23

 Every C program is a collection of instructions and every instruction is a collection of
some individual units. Every smallest individual unit of a c program is called token.
Every instruction in a c program is a collection of tokens. Tokens are used to construct
c programs and they are said to the basic building blocks of a c program.

 In a c program tokens may contain the following...

 Keywords

 Identifiers

 Operators

 Special Symbols

 Constants

 Strings

 Data values

 In a C program, a collection of all the keywords, identifiers, operators, special
symbols, constants, strings, and data values are called tokens.

24

Consider the following C program...

#include<stdio.h>

#include<conio.h>

int main() {

int i;

clrscr();

printf("ASCII ==> Character\n");

for(i = -128; i <= 127; i++)

printf("%d ==> %c\n", i, i);

getch();

return 0;

}

C Keywords
25

 As every language has words to construct statements, C programming also has

words with a specific meaning which are used to construct c program instructions.

In the C programming language, keywords are special words with predefined

meaning. Keywords are also known as reserved words in C programming

language.

 In the C programming language, there are 32 keywords. All the 32 keywords

have their meaning which is already known to the compiler.

 Keywords are the reserved words with predefined meaning which already

known to the compiler

 Whenever C compiler come across a keyword, automatically it understands its

meaning.

26

 Properties of Keywords
 All the keywords in C programming language are defined as

lowercase letters so they must be used only in lowercase letters

 Every keyword has a specific meaning, users can not change that
meaning.

 Keywords can not be used as user-defined names like variable,
functions, arrays, pointers, etc...

 Every keyword in C programming language represents something
or specifies some kind of action to be performed by the compiler.

 The following table specifies all the 32 keywords with their
meaning

27

C Identifiers
28

 In C programming language, programmers can specify their name to a variable,
array, pointer, function, etc... An identifier is a collection of characters which acts as
the name of variable, function, array, pointer, structure, etc... In other words, an
identifier can be defined as the user-defined name to identify an entity uniquely in
the c programming language that name may be of the variable name, function
name, array name, pointer name, structure name or a label.

 The identifier is a user-defined name of an entity to identify it uniquely during the
program execution.

 Example

int marks;

char studentName[30];

 Here, marks and studentName are identifiers.

Rules for Creating Identifiers
29

 An identifier can contain letters (UPPERCASE and lowercase), numerics &
underscore symbol only.

 An identifier should not start with a numerical value. It can start with a letter or
an underscore.

 We should not use any special symbols in between the identifier even
whitespace. However, the only underscore symbol is allowed.

 Keywords should not be used as identifiers.

 There is no limit for the length of an identifier. However, the compiler considers
the first 31 characters only.

 An identifier must be unique in its scope.

Rules for Creating Identifiers for better programming
30

 The following are the commonly used rules for creating
identifiers for better programming...
 The identifier must be meaningful to describe the entity.

 Since starting with an underscore may create conflict with system
names, so we avoid starting an identifier with an underscore.

 We start every identifier with a lowercase letter. If an identifier
contains more than one word then the first word starts with a
lowercase letter and second word onwards first letter is used as an
UPPERCASE letter. We can also use an underscore to separate
multiple words in an identifier.

 int a,b;

 float _a;

 char _123;

 double pi;

 int value,Value,vAlue;

 int Auto;

 int a b;

 float 123a;

 char str-;

 double pi, a;

 int break;

31

Valid Identifiers Invalid Identifiers

Datatypes
32

 Data used in c program is classified into different types based on its properties. In

the C programming language, a data type can be defined as a set of values with

similar characteristics. All the values in a data type have the same properties.

 Data types in the c programming language are used to specify what kind of value

can be stored in a variable. The memory size and type of the value of a variable

are determined by the variable data type. In a c program, each variable or

constant or array must have a data type and this data type specifies how much

memory is to be allocated and what type of values are to be stored in that variable

or constant or array. The formal definition of a data type is as follows...

 The Data type is a set of value with predefined characteristics. data types are

used to declare variable, constants, arrays, pointers, and functions.

33

34

 In the c programming language, data types are classified as follows...

 Primary data types (Basic data types or Predefined data types)

 Derived data types (Secondary data types OR User-defined data types)

 Enumeration data types

 Void data type

 Primary data types

 The primary data types in the C programming language are the basic data types. All
the primary data types are already defined in the system. Primary data types are also
called as Built-In data types. The following are the primary data types in c
programming language...

 Integer data type

 Floating Point data type

 Double data type

 Character data type

35

Integer Data type
36

 The integer data type is a set of whole numbers. Every
integer value does not have the decimal value. We use
the keyword "int" to represent integer data type in c.
We use the keyword int to declare the variables and to
specify the return type of a function. The integer data
type is used with different type modifiers like short,
long, signed and unsigned. The following table provides
complete details about the integer data type.

37

Floating Point Data Types
38

 Floating-point data types are a set of numbers with the decimal
value. Every floating-point value must contain the decimal value.
The floating-point data type has two variants...

 float

 double

 We use the keyword "float" to represent floating-point data type
and "double" to represent double data type in c. Both float and
double are similar but they differ in the number of decimal places.
The float value contains 6 decimal places whereas double value
contains 15 or 19 decimal places. The following table provides
complete details about floating-point data types.

39

Character Data Type

 The character data type is a set of characters enclosed in single quotations. The

following table provides complete details about the character data type.

40

41

The following table provides complete information about all the data types in c programming
language..

42

void data type

 The void data type means nothing or no value. Generally, the void is used to specify a function
which does not return any value. We also use the void data type to specify empty parameters
of a function.

Enumerated data type

 An enumerated data type is a user-defined data type that consists of integer constants and
each integer constant is given a name. The keyword "enum" is used to define the enumerated
data type.

Derived data types

 Derived data types are user-defined data types. The derived data types are also called as
user-defined data types or secondary data types. In the c programming language, the derived
data types are created using the following concepts...

 Arrays

 Structures

 Unions

 Enumeration

Variables
43

 Variables in a c programming language are the named memory locations where the user can
store different values of the same datatype during the program execution. In other words, a
variable can be defined as a storage container to hold values of the same datatype during the
program execution.

 The formal definition of a variable is as follows...

 Variable is a name given to a memory location where we can store different values of the
same datatype during the program execution.

 Every variable in c programming language must be declared in the declaration section before it
is used. Every variable must have a datatype that determines the range and type of values be
stored and the size of the memory to be allocated.

 A variable name may contain letters, digits and underscore symbol. The following are the rules
to specify a variable name...

 Variable name should not start with a digit.

 Keywords should not be used as variable names.

 A variable name should not contain any special symbols except underscore(_).

 A variable name can be of any length but compiler considers only the first 31 characters of the
variable name.

44

Declaration of Variable

 Declaration of a variable tells the compiler to allocate the required amount of
memory with the specified variable name and allows only specified datatype
values into that memory location. In C programming language, the declaration
can be performed either before the function as global variables or inside any
block or function. But it must be at the beginning of block or function.

Declaration Syntax:

datatype variableName;

Example

int number;

 The above declaration tells to the compiler that allocates 2 bytes of memory
with the name number and allows only integer values into that memory location.

Constants
45

 In C programming language, a constant is similar to the variable but the constant

hold only one value during the program execution. That means, once a value is

assigned to the constant, that value can't be changed during the program

execution. Once the value is assigned to the constant, it is fixed throughout the

program. A constant can be defined as follows...

 A constant is a named memory location which holds only one value throughout the

program execution.

 In C programming language, a constant can be of any data type like integer,

floating-point, character, string and double, etc.,

Integer constants
46

 An integer constant can be a decimal integer or octal integer or hexadecimal
integer. A decimal integer value is specified as direct integer value whereas octal
integer value is prefixed with 'o' and hexadecimal value is prefixed with 'OX'.

 An integer constant can also be unsigned type of integer constant or long type of
integer constant. Unsigned integer constant value is suffixed with 'u' and long integer
constant value is suffixed with 'l' whereas unsigned long integer constant value is
suffixed with 'ul'.

 Example

 125 → Decimal Integer Constant

 O76 → Octal Integer Constant

 OX3A → Hexa Decimal Integer Constant

 50u → Unsigned Integer Constant

 30l → Long Integer Constant

 100ul → Unsigned Long Integer Constant

47

Floating Point constants

 A floating-point constant must contain both integer and decimal parts. Some times it may also
contain the exponent part. When a floating-point constant is represented in exponent form, the
value must be suffixed with 'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.

Character Constants

 A character constant is a symbol enclosed in single quotation. A character constant has a
maximum length of one character.

Example

'A'

'2'

'+'

String Constants
48

A string constant is a collection of characters, digits, special symbols and escape
sequences that are enclosed in double quotations.

We define string constant in a single line as follows...

"This is C Programming class"

We can define string constant using multiple lines as follows...

" This\

is\

C Programming class "

We can also define string constant by separating it with white space as follows...

"This" "is" " C Programming "

All the above three defines the same string constant.

Creating constants in C
49

 In a c programming language, constants can be created using two concepts...

 Using the 'const' keyword

 Using '#define' preprocessor

Using the 'const' keyword

 We create a constant of any datatype using 'const' keyword. To create a constant, we prefix the
variable declaration with 'const' keyword.

 The general syntax for creating constant using 'const' keyword is as follows...

const datatype constantName ;

OR

const datatype constantName = value ;

 Example

const int x = 10 ;

Here, 'x' is a integer constant with fixed value 10.

Example Program
50

#include<stdio.h>

#include<conio.h>

void main()

{

int i = 9 ;

const int x = 10 ;

i = 15 ;

x = 100 ; // creates an error

printf("i = %d\n x = %d", i, x) ;

}

The above program gives an error because we are trying to change the constant variable value (x = 100).

Using '#define' preprocessor

We can also create constants using
'#define' preprocessor directive.
When we create constant using this
preprocessor directive it must be
defined at the beginning of the
program (because all the
preprocessor directives must be
written before the global
declaration).

We use the following syntax to
create constant using '#define'
preprocessor directive...

#define CONSTANTNAME value

Example

#define PI 3.14

Here, PI is a constant with value 3.14

Example Program

#define PI 3.14

void main(){

int r, area ;

printf("Please enter the radius of circle : ") ;

scanf("%d", &r) ;

area = PI * (r * r) ;

printf("Area of the circle = %d", area) ;

}

51

Operators
52

 An operator is a symbol used to perform arithmetic and logical operations in a
program. That means an operator is a special symbol that tells the compiler to
perform mathematical or logical operations. C programming language supports a
rich set of operators that are classified as follows.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Increment & Decrement Operators

 Assignment Operators

 Bitwise Operators

 Conditional Operator

 Special Operators

Arithmetic Operators (+, -, *, /, %)
53

 The arithmetic operators are the symbols that are used to perform basic mathematical operations like

addition, subtraction, multiplication, division and percentage modulo. The following table provides

information about arithmetic operators.

 The addition operator can be used with numerical data types and character data type. When it is

used with numerical values, it performs mathematical addition and when it is used with character data

type values, it performs concatenation (appending).

 The remainder of the division operator is used with integer data type only.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Remainder of the Division 5 % 2 = 1

54

55

Relational Operators (<, >, <=, >=, ==, !=)
56

 The relational operators are the symbols that are used to compare two values. That means the relational

operators are used to check the relationship between two values. Every relational operator has two results TRUE

or FALSE. In simple words, the relational operators are used to define conditions in a program. The following

table provides information about relational operators.

Operator Meaning Example

<
Returns TRUE if the first value is smaller than second value

otherwise returns FALSE
10 < 5 is FALSE

>
Returns TRUE if the first value is larger than second value

otherwise returns FALSE
10 > 5 is TRUE

<=
Returns TRUE if the first value is smaller than or equal to second

value otherwise returns FALSE
10 <= 5 is FALSE

>=
Returns TRUE if the first value is larger than or equal to second

value otherwise returns FALSE
10 >= 5 is TRUE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is FALSE

!= Returns TRUE if both values are not equal otherwise returns FALSE 10 != 5 is TRUE

57

58

Logical Operators (&&, ||, !)
59

 The logical operators are the symbols that are used to combine multiple conditions into one condition. The

following table provides information about logical operators.

 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is FALSE then complete

condition becomes FALSE.

 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE then complete

condition becomes TRUE.

Operator Meaning Example

&&
Logical AND - Returns TRUE if all conditions are TRUE

otherwise returns FALSE
10 < 5 && 12 > 10 is FALSE

||
Logical OR - Returns FALSE if all conditions are FALSE

otherwise returns TRUE
10 < 5 || 12 > 10 is TRUE

!
Logical NOT - Returns TRUE if condition is FALSE and returns

FALSE if it is TRUE
!(10 < 5 && 12 > 10) is TRUE

60

61

Increment & Decrement Operators (++ & --)
62

 The increment and decrement operators are called unary operators because both need only one

operand. The increment operators adds one to the existing value of the operand and the decrement

operator subtracts one from the existing value of the operand. The following table provides

information about increment and decrement operators.

 The increment and decrement operators are used Infront of the operand (++a) or after the operand

(a++). If it is used in front of the operand, we call it as pre-increment or pre-decrement and if it is

used after the operand, we call it as post-increment or post-decrement.

Operator Meaning Example

++
Increment - Adds one to

existing value

int a = 5;

a++; ⇒ a = 6

--
Decrement - Subtracts one

from existing value

int a = 5;

a--; ⇒ a = 4

Pre-Increment or Pre-Decrement
63

 In the case of pre-increment, the value of the variable is increased by one before the expression

evaluation. In the case of pre-decrement, the value of the variable is decreased by one before the

expression evaluation. That means, when we use pre-increment or pre-decrement, first the value of

the variable is incremented or decremented by one, then the modified value is used in the expression

evaluation.

Post-Increment or Post-Decrement
64

 In the case of post-increment, the value of the variable is increased by one after the expression

evaluation. In the case of post-decrement, the value of the variable is decreased by one after the

expression evaluation. That means, when we use post-increment or post-decrement, first the expression

is evaluated with existing value, then the value of the variable is incremented or decremented by one.

Assignment Operators (=, +=, -=, *=, /=, %=)
65

 The assignment operators are used to assign right-hand side value (Rvalue) to the left-hand side variable

(Lvalue). The assignment operator is used in different variants along with arithmetic operators. The

following table describes all the assignment operators in the C programming language.

Operator Meaning Example

= Assign the right-hand side value to left-hand side variable A = 15

+= Add both left and right-hand side values and store the result into left-hand side variable
A += 10

⇒ A = A+10

-=
Subtract right-hand side value from left-hand side variable value and store the result into left-

hand side variable

A -= B

⇒ A = A-B

*=
Multiply right-hand side value with left-hand side variable value and store the result into left-

hand side variable

A *= B

⇒ A = A*B

/=
Divide left-hand side variable value with right-hand side variable value and store the result into

the left-hand side variable

A /= B

⇒ A = A/B

%=
Divide left-hand side variable value with right-hand side variable value and store the

remainder into the left-hand side variable

A %= B

⇒ A = A%B

66

67

Bitwise Operators (&, |, ^, ~, >>, <<)
68

 The bitwise operators are used to perform bit-level operations in the c programming language. When we use the bitwise operators,

the operations are performed based on the binary values. The following table describes all the bitwise operators in the C

programming language. Let us consider two variables A and B as A = 25 (11001) and B = 20 (10100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1 otherwise it is 0
A & B

⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0 otherwise it is 1
A | B

⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are same otherwise it is 1
A ^ B

⇒ 13 (01101)

~ the result of Bitwise once complement is negation of the bit (Flipping)
~A

⇒ 6 (00110)

<<
the Bitwise left shift operator shifts all the bits to the left by the specified number

of positions

A << 2

⇒ 100 (1100100)

>>
the Bitwise right shift operator shifts all the bits to the right by the specified

number of positions

A >> 2

⇒ 6 (00110)

69

70

Conditional Operator (?:)
71

 The conditional operator is also called a ternary operator because it requires three operands. This

operator is used for decision making. In this operator, first we verify a condition, then we perform one

operation out of the two operations based on the condition result. If the condition is TRUE the first

option is performed, if the condition is FALSE the second option is performed. The conditional

operator is used with the following syntax.

 Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?100:200; ⇒ A value is 100

72

73

Special Operators (sizeof, pointer, comma, dot, etc.)
74

 The following are the special operators in c programming language.

sizeof operator

 This operator is used to find the size of the memory (in bytes) allocated for a variable. This
operator is used with the following syntax.

 sizeof(variableName);

Example

 sizeof(A); ⇒ the result is 2 if A is an integer

Pointer operator (*)

 This operator is used to define pointer variables in c programming language.

 Comma operator (,)

 This operator is used to separate variables while they are declaring, separate the expressions in
function calls, etc.

Dot operator (.)

 This operator is used to access members of structure or union.

Expression
75

 In any programming language, if we want to perform any calculation or to frame any condition
etc., we use a set of symbols to perform the task. These set of symbols makes an expression.

 In the C programming language, an expression is defined as follows.

 An expression is a collection of operators and operands that represents a specific value.

 In the above definition, an operator is a symbol that performs tasks like arithmetic operations,
logical operations, and conditional operations, etc.

 Operands are the values on which the operators perform the task. Here operand can be a
direct value or variable or address of memory location.

 In the C programming language, expressions are divided into THREE types. They are as follows...

 Infix Expression

 Postfix Expression

 Prefix Expression

 The above classification is based on the operator position in the expression.

Expression Types in C
76

 Infix Expression

 The expression in which the operator is used between operands is called infix expression.

 The infix expression has the following general structure.

Operand1 Operator Operand2

Example

77

 Postfix Expression

 The expression in which the operator is used after operands is called postfix expression.

 The postfix expression has the following general structure.

Operand1 Operand2 Operator

 Example

78

 Prefix Expression

 The expression in which the operator is used before operands is called a prefix expression.

 The prefix expression has the following general structure.

 Operator Operand1 Operand2

 Example

Expression Evaluation
79

 In the C programming language, an expression is evaluated based on the operator precedence and
associativity. When there are multiple operators in an expression, they are evaluated according to
their precedence and associativity. The operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

 To understand expression evaluation in c, let us consider the following simple example expression...

10 + 4 * 3 / 2

 In the above expression, there are three operators +, * and /. Among these three operators, both
multiplication and division have the same higher precedence and addition has lower precedence.
So, according to the operator precedence both multiplication and division are evaluated first and
then the addition is evaluated. As multiplication and division have the same precedence they are
evaluated based on the associativity. Here, the associativity of multiplication and division is left to
right. So, multiplication is performed first, then division and finally addition. So, the above
expression is evaluated in the order of * / and +. It is evaluated as follows...

4 * 3 ====> 12

12 / 2 ===> 6

10 + 6 ===> 16

 The expression is evaluated to 16.

Operator Precedence and Associativity
80

 Operator precedence is used to determine the order of operators
evaluated in an expression. In c programming language every operator
has precedence (priority). When there is more than one operator in an
expression the operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

 Operator associativity is used to determine the order of operators with
equal precedence evaluated in an expression. In the c programming
language, when an expression contains multiple operators with equal
precedence, we use associativity to determine the order of evaluation of
those operators.

 In c programming language the operator precedence and associativity are
as shown in the following table.

81

Library Functions
82

 The standard functions are built-in functions. In C programming language, the standard

functions are declared in header files. The standard functions are also called as library

functions or pre-defined functions.

 In C when we use standard functions, we must include the respective header file using

#include statement. For example, the function printf() is defined in header file stdio.h

(Standard Input Output header file). When we use printf() in our program, we must

include stdio.h header file using #include<stdio.h> statement.

 The C standard library provides macros, type definitions and functions for tasks such as

string handling, mathematical computations, input/output processing, memory

management, and several other operating system services.

 C Programming Language provides the following header files with standard functions.

83

Header File Purpose Example Functions

stdio.h Provides functions to perform standard I/O operations printf(), scanf()

conio.h Provides functions to perform console I/O operations clrscr(), getch()

math.h Provides functions to perform mathematical operations sqrt(), pow()

string.h Provides functions to handle string data values strlen(), strcpy()

stdlib.h Provides functions to perform general functions/td> calloc(), malloc()

time.h Provides functions to perform operations on time and date time(), localtime()

ctype.h Provides functions to perform - testing and mapping of character data values isalpha(), islower()

setjmp.h Provides functions that are used in function calls setjump(), longjump()

signal.h Provides functions to handle signals during program execution signal(), raise()

assert.h Provides Macro that is used to verify assumptions made by the program assert()

locale.h Defines the location specific settings such as date formats and currency symbols setlocale()

stdarg.h Used to get the arguments in a function if the arguments are not specified by the function va_start(), va_end()

errno.h Provides macros to handle the system calls Error, errno

graphics.h Provides functions to draw graphics. circle(), rectangle()

float.h Provides constants related to floating point data values

stddef.h Defines various variable types

limits.h Defines the maximum and minimum values of various variable types like char, int and long

84

85

86

87

88

89

90

