PROGRAMMING IN C

Dr P.V. Praveen Sundar,

Assistant Professor,

Department of Computer Science
Adhiparasakthi College of Arts & Science,
Kalavai.

23-01-2021 -1 CS

Introduction
2 P

0 C is a general-purpose, high-level language that was originally developed by
Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. C was
originally first implemented on the DEC PDP-11 computer in 1972.

0 In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K&R standard.

0 The UNIX operating system, the C compiler, and essentially all UNIX application
programs have been written in C.

0 C has now become a widely used professional language for various reasons —
O Easy to learn

Structured language

It produces efficient programs

It can handle low-level activities

It can be compiled on a variety of computer platforms.

Facts about C

C was invented to write an operating system called UNIX.
0 C is a successor of B language which was introduced around the early

1970s.

0 The language was formalized in 1988 by the American National Standard
Institute (ANSI).

The UNIX OS was totally written in C.

Today C is the most widely used and popular System Programming
Language.

Most of the state-of-the-art software have been implemented using C.
Today's most popular Linux OS and MySQL have been written in C.

Origin of C

Algol 1960 International Group
BCPL 1967 Martin Richard
B 1970 Ken Thompson
Traditional C 1972 Dennis Ritchie

K&RC 1978 Kernighan & Dennis Ritchie

ANSIC 1989 ANSI Committee

ANSI/ISOC 1990 ISO Committee

C99 1999 Standardization Committee

Features
s

C is the widely used language. It provides many features that are given below.
Simple

Machine Independent or Portable

Mid-level programming language

Structured programming language

Rich Library

Memory Management

Fast Speed

Pointers

Recursion

O O O o o 0o o o 0o O

Extensible

C Program Basics

C is a structured
programming

language. Every
¢ program and
its statements
must be in a

particular
structure. Every
c program has
the following
general
structure...

it is oplonal. Generally used to provice description about the program

* * [
/ comments / N It is oplonal. Gewerally used to inelude header files, define constants and enum
preprocessing commands<

global declarations;<~

int main ()
{ main is a user defined functlon and it is compulsory statement.
It bndicates the starting polnt of program execution.
without main compiler does wot wnderstand from which statement execusion starts

It is opional. Used to declare the variables that ae common for multiple functions

local declarations;
executable statements;

Local declaration and executable statements are written according to our requirment

return 0;
}

userdefined function ()<
() " it s oplonal. Used to provide bmplementation for user defined functions that already
{ declaved either at global or Local declaration part.

function definition;

A

0 Line 1: Comments - They are ignored by the compiler

0 This section is used to provide a small description of the
program. The comment lines are simply ignored by the
compiler, that means they are not executed. In C, there are
two types of comments.

O Single Line Comments: Single line comment begins with // symbol.
We can write any number of single line comments.

O Multiple Lines Comments: Multiple lines comment begins with /*
symbol and ends with */. We can write any number of multiple
lines comments in a program.

0 In a C program, the comment lines are optional. Based on the requirement,
we write comments. All the comment lines in a C program just provide the
guidelines to understand the program and its code.

Line 2: Preprocessing Commands

Preprocessing commands are used to include header files and to define
constants. We use the #include statement to include the header file into our
program. We use a #define statement to define a constant. The
preprocessing statements are used according to the requirements. If we
don't need any header file, then no need to write #include statement. If we
don't need any constant, then no need to write a #define statement.

Line 3: Global Declaration

0 The global declaration is used to define the global variables, which are
common for all the functions after its declaration. We also use the global
declaration to declare functions. This global declaration is used based on
the requirement.

Line 4: int main()

0 Every C program must write this statement. This statement (main) specifies
the starting point of the C program execution. Here, main is a user-defined
method which tells the compiler that this is the starting point of the
program execution. Here, int is a data type of a value that is going to
return to the Operating System after completing the main method
execution. If we don't want to return any value, we can use it as void.

oo §
Line 5: Open Brace ({)

0 The open brace indicates the beginning of the block which belongs to the main
method. In C program, every block begins with a '{' symbol.

Line 6: Local Declaration

0 In this section, we declare the variables and functions that are local to the function or
block in which they are declared. The variables which are declared in this section
are valid only within the function or block in which they are declared.

Line 7: Executable statements

0 In this section, we write the statements which perform tasks like reading datq,
displaying the result, calculations, etc., All the statements in this section are written
according to the requirements.

Line 8: Return Statement

0 Return Statement will returns the value to the operating system.

T
Line 9: Closing Brace (})

0 The close brace indicates the end of the block which belongs to the
main method. In C program every block ends with a '} symbol.

Line 10, 11, 12, ...: User-defined function()

0 This is the place where we implement the user-defined functions. The
user-defined function implementation can also be performed
before the main method. In this case, the user-defined function need
not be declared. Directly it can be implemented, but it must be
before the main method. In a program, we can define as many
user-defined functions as we want. Every user-defined function
needs a function call to execute its statements.

_ 12
General rules for any C program

[
[

Every executable statement must end with a semicolon symbol (;).

Every C program must contain exactly one main method (Starting
point of the program execution).

All the system-defined words (keywords) must be used in lowercase
letters.

Keywords can not be used as user-defined names(identifiers).
For every open brace ({), there must be respective closing brace (}).
Every variable must be declared before it is used.

C Character Set

0 As every language contains a set of characters used to construct words,
statements, etc., C language also has a set of characters that include
alphabets, digits, and special symbols. C language supports a total of 256
characters.

0 Every C program contains statements. These statements are constructed
using words and these words are constructed using characters from the C
character set. C language character set contains the following set of
characters.

O Alphabets
O Digits
O Special Symbols

.. 4
Alphabets

0 C language supports all the alphabets from the English language. Lower and upper case letters
together support 52 alphabets.

0 lower case letters - a to z
o0 UPPER CASE LETTERS - Ato Z

Digits

0 Clanguage supports 10 digits which are used to construct numerical values in C language.
o Digits-0,1,2,3,4,5,6,7,8,9

Special Symbols

o C language supports a rich set of special symbols that include symbols to perform
mathematical operations, to check conditions, white spaces, backspaces, and other special
symbols.

O Special Symbols -~ @ # $% & *()_-+={}[1;:'""/2.>,<)\ | tab newline space NULL
bell backspace vertical tab etc.,

These are Control Characters These are Printable Characters
ASCIlI value Character Meaning ASCIl Value Character ASCII Value Character ASCIlI value Character

o NULL null 32 Space 64 @ 96

1 SOH Start of header 33 ! 65 A 97 =
2 STX start of text 34 3 66 B 98 b
3 ETX end of text 35 # 67 C 99 C
aq EOT end of transaction 36 S 68 D 100 d
S ENQ enquiry 37 % 69 E 101 =
6 ACK acknowledgement 38 & 70 F 102 f
7 BEL bell 39 71 G 103 =3
8 BS back Space 40 (72 H 104 h
9 HT Horizontal Tab 41) 73 i 105 i
10 LF Line Feed 42 - 74 3 106 j
11 vT Vertical Tab 43 + 75 K 107 1
12 FF Form Feed 44 = 76 L 108 |
13 CR Carriage Return 45 - 77 ™M 109 m
14 SO Shift Out 46 - 78 N 110 n
e Sl Shiftin a7 / 79 O 111 o
16 DLE Data Link Escape 48 0 80 P 112)
17 DC1 Device Control 1 49 1 81 Q 113 q
18 DC2 Device Control 2 S0 2 82 R 114

19 DC2 Device Control 3 51 3 83 S 115

20 DCAa Device Control 4 52 aq 84 116

21 NAK Negative Acknowledgement 53 S 85 U 117 u
22 SYN Synchronous idle 54 6 86 VvV 118 v
23 ETB End of Trans Block 55 7 4 87 W 119 w
24 CAN Cancel 56 8 38 X 120
25 EM End of Mediium 57 9 89 Y 121 Y
26 SuUB Sunstitute 58 - 90 z 122 z
27 ESC Escape 59 - 91 [123 {
28 FS File Separator 60 < 92 \ 124 |
29 GS Group Separator 61 = 93] 125 }
30 RS Record Separator 62 = e N 126 =
31 us Unit Separator 63 [4 a5 e 127 DEL

Creating and Running C Program
.. A4

0 Generally, the programs created using programming languages like C, C++, Javaq, etc,,
are written using a high-level language like English. But, the computer cannot understand
the high-level language. It can understand only low-level language. So, the program
written in the high-level language needs to be converted into the low-level language to
make it understandable for the computer. This conversion is performed using either
Interpreter or Compiler.

0 Popular programming languages like C, C++, Java, etc., use the compiler to convert
high-level language instructions into low-level language instructions.

0 A compiler is a program that converts high-level language instructions into low-level
language instructions. Generally, the compiler performs two things, first it verifies the
program errors, if errors are found, it returns a list of errors otherwise it converts the
complete code into the low-level language.

A EEE———————————————————,

Step Create Source Code Write program in the Ediﬁ’ror &
save it with .c extension
Step Compile Source Code Press Alt + F9 to compile
Step NN S CAetite o R eteTe "2 Press Cirl + F9 to run
Press
Step y Check Result Alt + F5
to open UserScreen

s
Step 1: Creating a Source Code

0 Source code is a file with C programming instructions in a high-level language. To
create source code, we use any text editor to write the program instructions. The
instructions written in the source code must follow the C programming language rules.
The following steps are used to create a source code file in Windows OS...

o Click on the Start button

Select Run

Type cmd and press Enter

Type cd c:\TC\bin in the command prompt and press Enter
Type TC press Enter

Click on File -> New in C Editor window

Type the program

Save it as FileName.c (Use shortcut key F2 to save)

I I
Step 2: Compile Source Code (Alt + F9)

0 The compilation is the process of converting high-level language instructions into low-
level language instructions. We use the shortcut key Alt + F9 to compile a C
program in Turbo C.

0 The compilation is the process of converting high-level language instructions into low-
level language instructions.

0 Whenever we press Alt + F9, the source file is going to be submitted to the
Compiler. On receiving a source file, the compiler first checks for the Errors. If there
are any Errors then compiler returns List of Errors, if there are no errors then the
source code is converted into object code and stores it as a file with .obj extension.
Then the object code is given to the Linker. The Linker combines both the object code
and specified header file code and generates an Executable file with a .exe
extension.

_ 20 y
Step 3: Executing / Running Executable File (Ctrl + F9)

0 After completing compilation successfully, an executable file is created with
a .exe extension. The processor can understand this .exe file content so that
it can perform the task specified in the source file.

0 We use a shortcut key Ctrl + F9 to run a C program. Whenever we press
Ctrl + F9, the .exe file is submitted to the CPU. On receiving .exe file, CPU
performs the task according to the instruction written in the file. The result
generated from the execution is placed in a window called User Screen.

Step 4: Check Result (Alt + F5)

0 After running the program, the result is placed into User Screen. Just we
need to open the User Screen to check the result of the program execution.

We use the shortcut key Alt + F5 to open the User Screen and check the
result.

Execution Process of a C Program

Executable File Processor User Screen

Source File Compiler Object File Linker

— 1101 . " A4 ;
(T -
Sample.c Sample.obj T Sample.exe Output

List of Errors |
stdio.h

Compilation Header Files

Overall Process

0 Type the program in C editor and save with .c extension (Press F2 to save).
0 Press Alt + F9 to compile the program.

0 If there are errors, correct the errors and recompile the program.

0 If there are no errors, then press Ctrl + F9 to execute /run the program.

0 Press Alt + F5 to open User Screen and check the result.

C Tokens

0 Every C program is a collection of instructions and every instruction is a collection of
some individual units. Every smallest individual unit of a ¢ program is called token.
Every instruction in a ¢ program is a collection of tokens. Tokens are used to construct
c programs and they are said to the basic building blocks of a ¢ program.

0 In a c program tokens may contain the following...

Keywords
|dentifiers
Operators
Special Symbols
Constants
Strings

Data values

O In a C program, a collection of all the keywords, identifiers, operators, special
symbols, constants, strings, and data values are called tokens.

Consider the following C program...
Hinclude<stdio.h>
#Hinclude<conio.h>
int main() {
int i;
clrscr();
printf("ASCll ==> Character\n");
for(i=-128;i<=127; i++)
printf("%d ==> %c\n", i, i);
getch();

return O;

C Keywords
.2 45

0 As every language has words to construct statements, C programming also has
words with a specific meaning which are used to construct ¢ program instructions.
In the C programming language, keywords are special words with predefined
meaning. Keywords are also known as reserved words in C programming
language.

0 In the C programming language, there are 32 keywords. All the 32 keywords
have their meaning which is already known to the compiler.

0 Keywords are the reserved words with predefined meaning which already
known to the compiler

0 Whenever C compiler come across a keyword, automatically it understands its
meaning.

2 5
0 Properties of Keywords

o All the keywords in C programming language are defined as
lowercase letters so they must be used only in lowercase letters

O Every keyword has a specific meaning, users can not change that
meaning.

O Keywords can not be used as user-defined names like variable,
functions, arrays, pointers, etc...

O Every keyword in C programming language represents something
or specifies some kind of action to be performed by the compiler.

O The following table specifies all the 32 keywords with their
meaning

32 Keywords in C Progromming Language with their Meaning
SNo Keyword Meoning

Uncondmonoleonholmmmtmd'om-m
,ulcth&looplnos’cm

'Uudioupnumchmodcrmwpc -

m«wmmwmdmmmeom
hmcbcgmmdboﬂnomm

Undtodunedobbcklndwhﬂcm
UndioddlncFAl&Ebloetdlfmm
Undlonpmutmalmdcu
Uudfodclucolooplnosmm -
Usodfodclmaeondﬁlondcmlmw
huammmmmmmm
Uudiofualnotccmﬂoomwtbn

Ifhoiypcoodllutho'dlmﬂnbcﬂcdcfotm

Umhomanmﬂevadcblcs eonmms

Undfodclncwltcb omcm:nnm '
28 ' Undbcmnmmmmmmom

Uudfolndlealcnolhlno Mumvch&pm-dﬂofoluncﬁm

32 Used to Mne a boplno sﬂ:nncnt
- All the kcywords are in lowercase letters

- Keywords can't be used as userdefined name like variable name, function name, lable, etc...
- Keywords are also called as Reserved Words

C |Identifiers
B

0 In C programming language, programmers can specify their name to a variable,
array, pointer, function, etc... An identifier is a collection of characters which acts as
the name of variable, function, array, pointer, structure, etc... In other words, an
identifier can be defined as the user-defined name to identify an entity uniquely in
the ¢ programming language that name may be of the variable name, function
name, array name, pointer name, structure name or a label.

0 The identifier is a user-defined name of an entity to identify it uniquely during the
program execution.
0 Example
int marks;
char studentName[30];
o0 Here, marks and studentName are identifiers.

Rules for Creating ldentifiers
;=s.

H

An identifier can contain letters (UPPERCASE and lowercase), numerics &
underscore symbol only.

An identifier should not start with a numerical value. It can start with a letter or
an underscore.

We should not use any special symbols in between the identifier even
whitespace. However, the only underscore symbol is allowed.

Keywords should not be used as identifiers.

There is no limit for the length of an identifier. However, the compiler considers
the first 31 characters only.

An identifier must be unique in its scope.

Rules for Creating Identifiers for better programming
0

0 The following are the commonly used rules for creating
identifiers for better programming...

O The identifier must be meaningful to describe the entity.

O Since starting with an underscore may create conflict with system
names, so we avoid starting an identifier with an underscore.

O We start every identifier with a lowercase letter. If an identifier
contains more than one word then the first word starts with a
lowercase letter and second word onwards first letter is used as an
UPPERCASE letter. We can also use an underscore to separate
multiple words in an identifier.

Valid Identifiers Invalid Identifiers

0 int a,b; O int a b;
0 float _a;

- 0 float 1230q;
0 char _123; '
0 double pi; 0 char str-;
0 int value,Value,vAlue; 0 double pi, g;
O int Auto;

0 int break;

Datatypes

0 Data used in ¢ program is classified into different types based on its properties. In
the C programming language, a data type can be defined as a set of values with
similar characteristics. All the values in a data type have the same properties.

0 Data types in the ¢ programming language are used to specify what kind of value
can be stored in a variable. The memory size and type of the value of a variable
are determined by the variable data type. In a ¢ program, each variable or
constant or array must have a data type and this data type specifies how much
memory is to be allocated and what type of values are to be stored in that variable
or constant or array. The formal definition of a data type is as follows...

0 The Data type is a set of value with predefined characteristics. data types are
used to declare variable, constants, arrays, pointers, and functions.

1. Basic Datatypes (Primary Datatpyes)

Interger, Floating Point
Double & Charachter

2. Enumerated types

Used to define variables that can only

Datatypes : .
assign certain integer values

3. void type

The void type indicates that no valuve.
That means an Empty value (nhothing)

4. Derived types

User created datatypes like Array,
structures, unions...

0 In the ¢ programming language, data types are classified as follows...
O Primary data types (Basic data types or Predefined data types)
O Derived data types (Secondary data types OR User-defined data types)
O Enumeration data types
O Void data type

0 Primary data types

0 The primary data types in the C programming language are the basic data types. All
the primary data types are already defined in the system. Primary data types are also
called as Built-In data types. The following are the primary data types in ¢
programming language...

O Integer data type

O Floating Point data type
O Double data type

O Character data type

Basic Datatypes (Primary Datatpyes)

Interger Floating Point Character
—float —char
Signed Unsigned —double —signed char
__int __int long double —Unsigned Char
—short int [—short int

—Jlong int —|ong int

Integer Data type
36 H

0 The integer data type is a set of whole numbers. Every
integer value does not have the decimal value. We use
the keyword "int" to represent integer data type in c.
We use the keyword int to declare the variables and to
specify the return type of a function. The integer data
type is used with different type modifiers like short,
long, signed and unsigned. The following table provides
complete details about the integer data type.

lype Range Specifier

tﬁignczllfion int) 2 -32768 to +32767 %d

. -2,147,483,648
long int 4 A %d

(signed long int) +2.147.483.647

unsigned long int 4 0 to 4,294,967,295 %u

Floating Point Data Types

0 Floating-point data types are a set of numbers with the decimal
value. Every floating-point value must contain the decimal value.
The floating-point data type has two variants...

O float
O double

0 We use the keyword "float" to represent floating-point data type
and "double" to represent double data type in c. Both float and
double are similar but they differ in the number of decimal places.
The float value contains 6 decimal places whereas double value
contains 15 or 19 decimal places. The following table provides
complete details about floating-point data types.

float 4 1.2E - 38 to 3.4E + 38 %f

double 8 2.3E-308 to 1.7E+308 %Id

long double 10 3.4E-4932 to 1.1E+4932 %ld

Character Data Type

0 The character data type is a set of characters enclosed in single quotations. The
following table provides complete details about the character data type.

 Specifier

char 1 128 to +127 %c

(signed char)

unsigned char | 0 to 255 %c

The following table provides complete information about all the data types in ¢ programming

language..
Integer Floating Point Double Character
What is it? Numbers without Numbers with Numbers with Any symbol enclosed
Q1311 decnmol value decimal value decimal value in single quotation
Keyword int float double char
Memory Slze 2 or 4 Bytes 4 Bytes 8 or 10 bBytes | Byte
-32768 to +32767
(or) -128 to + 127
Range 0 10 65535 1.2E - 38 to 3.4E + 38 2.3E-308 to 1.7E+308 . 'r(:r2)55

(Incase of 2 bytes only)

..

R T R R R TS S ETTTTTITTTTTTSTTTTT™ThET

short, long
signed, unsigned

e R T R e T T T T T I TSy

Type Qualifier const, volatile const, volatile const, volatil const, volatile

;. 4
void data type

0 The void data type means nothing or no value. Generally, the void is used to specify a function
which does not return any value. We also use the void data type to specify empty parameters
of a function.

Enumerated data type

0 An enumerated data type is a user-defined data type that consists of integer constants and
each integer constant is given a name. The keyword "enum" is used to define the enumerated
data type.

Derived data types

0 Derived data types are user-defined data types. The derived data types are also called as
user-defined data types or secondary data types. In the ¢ programming language, the derived
data types are created using the following concepts...

O Arrays
0O Structures
O Unions
O

Enumeration

Variables
I

0 Variables in a ¢ programming language are the named memory locations where the user can
store different values of the same datatype during the program execution. In other words, a
variable can be defined as a storage container to hold values of the same datatype during the
program execution.

0 The formal definition of a variable is as follows...

O Variable is a name given to a memory location where we can store different values of the
same datatype during the program execution.

0 Every variable in ¢ programming language must be declared in the declaration section before it
is used. Every variable must have a datatype that determines the range and type of values be
stored and the size of the memory to be allocated.

0 A variable name may contain letters, digits and underscore symbol. The following are the rules
to specify a variable name...

O Variable name should not start with a digit.

O Keywords should not be used as variable names.

O A variable name should not contain any special symbols except underscore(_).
O

A variable name can be of any length but compiler considers only the first 31 characters of the
variable name.

Declaration of Variable

O Declaration of a variable tells the compiler to allocate the required amount of
memory with the specified variable name and allows only specified datatype
values into that memory location. In C programming language, the declaration
can be performed either before the function as global variables or inside any
block or function. But it must be at the beginning of block or function.

Declaration Syntax:
datatype variableName;

Example

int number;

0 The above declaration tells to the compiler that allocates 2 bytes of memory
with the name number and allows only integer values into that memory location.

Constants
4 @

0 In C programming language, a constant is similar to the variable but the constant
hold only one value during the program execution. That means, once a value is
assigned to the constant, that value can't be changed during the program
execution. Once the value is assigned to the constant, it is fixed throughout the
program. A constant can be defined as follows...

O A constant is a named memory location which holds only one value throughout the
program execution.

0 In C programming language, a constant can be of any data type like integer,
floating-point, character, string and double, etc.,

Integer constants
.

0 An integer constant can be a decimal integer or octal integer or hexadecimal
integer. A decimal integer value is specified as direct integer value whereas octal
integer value is prefixed with 'o' and hexadecimal value is prefixed with 'OX'.

0 An integer constant can also be unsigned type of integer constant or long type of
integer constant. Unsigned integer constant value is suffixed with 'v' and long integer
constant value is suffixed with 'I' whereas unsigned long integer constant value is
suffixed with 'ul'.

0 Example
0o 125 - Decimal Integer Constant

O76 = Octal Integer Constant

OX3A - Hexa Decimal Integer Constant

50u = Unsigned Integer Constant

30l = Long Integer Constant

100ul = Unsigned Long Integer Constant

T
Floating Point constants
0 A floating-point constant must contain both integer and decimal parts. Some times it may also

contain the exponent part. When a floating-point constant is represented in exponent form, the
value must be suffixed with 'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.
Character Constants

0 A character constant is a symbol enclosed in single quotation. A character constant has a
maximum length of one character.

Example
A
X
"

String Constants

A string constant is a collection of characters, digits, special symbols and escape
sequences that are enclosed in double quotations.

We define string constant in a single line as follows...
"This is C Programming class"

We can define string constant using multiple lines as follows...
" This)\
is\

C Programming class "

We can also define string constant by separating it with white space as follows...
"This" "is" " C Programming "

All the above three defines the same string constant.

Creating constants in C
;. 4

0 In a ¢ programming language, constants can be created using two concepts...
0o Using the 'const' keyword
O Using '#define' preprocessor

Using the ‘const' keyword

0 We create a constant of any datatype using 'const' keyword. To create a constant, we prefix the
variable declaration with 'const' keyword.

0 The general syntax for creating constant using 'const' keyword is as follows...
const datatype constantName ;
OR

const datatype constantName = value ;
o Example

constintx =10;

Here, 'x' is a integer constant with fixed value 10.

Example Program
50

Hinclude<stdio.h>
Hinclude<conio.h>

void main()

{
inti =9 ;

const int x = 10 ;

i=15;
x =100 ; // creates an error
printf("i = %d\n x = %d", i, x) ;

The above program gives an error because we are trying to change the constant variable value (x = 100).

Using 'H#define' preprocessor
sy

We can also create constants using #define CONSTANTNAME value
'Htdefine' preprocessor directive. Example

When we create constant using this #define Pl 3.14
preprocessor directive it must be Here, Pl is a constant with value 3.14
defined at the beginning of the Example Program

program (because all the fidefine Pl 3.14
preprocessor directives must be void main(){

Wl‘iﬂ'en before ’rhe globql int r, area ;

printf("Please enter the radius of circle :) ;

scanf("%d", &r) ;
We use the following syntax to area = Pl (r % 1) ;

. |#d fo {J
create constant using erine printf(" Area of the circle = %d", area) ;
preprocessor directive... }

declaration).

Operators
_ 52|

0 An operator is a symbol used to perform arithmetic and logical operations in o
program. That means an operator is a special symbol that tells the compiler to
perform mathematical or logical operations. C programming language supports a
rich set of operators that are classified as follows.

O Arithmetic Operators

Relational Operators

Logical Operators

Increment & Decrement Operators
Assignment Operators

Bitwise Operators

Conditional Operator

Special Operators

Arithmetic Operators (+, -, *, /, %)

0 The arithmetic operators are the symbols that are used to perform basic mathematical operations like
addition, subtraction, multiplication, division and percentage modulo. The following table provides
information about arithmetic operators.

0 The addition operator can be used with numerical data types and character data type. When it is
used with numerical values, it performs mathematical addition and when it is used with character data
type values, it performs concatenation (appending).

0 The remainder of the division operator is used with integer data type only.

____ Operator | Meaning ________[Bxample _______

+ Addition 10+5=15
- Subtraction 10-5=5
* Multiplication 10*5 =50
/ Division 10/5=2

% Remainder of the Division 5%2=1

= File Edit 3Search Hun Compile Debug FProject Options Window Help

—Ln] ARTHIMET.C 2=[11=
void main()
i

int a,b:

a=20;

b=30:
clrscr():

printf (» athl;

printf (» a—bl;

printf (» axh);

printf(» (Fliat)as(floatlb):

printf (» axb);
getch():
¥

17:9 —

F1 Help Alt-F8 Next Msg Alt-FY Prev Mg Alt-F9 Compile F9 Make F10 Menu

A+B:
A-B:
A=B :
A-B:

10

—10

HEO
0.666667

AmodB: 20

Relational Operators (<, >, <=, >=, , =)
T

0 The relational operators are the symbols that are used to compare two values. That means the relational
operators are used to check the relationship between two values. Every relational operator has two results TRUE
or FALSE. In simple words, the relational operators are used to define conditions in a program. The following
table provides information about relational operators.

| Operator _|Meaning ___________________________|Bxample

< Re'rurns.TRUE if the first value is smaller than second value 10 < 5 is FALSE
otherwise returns FALSE

Returns TRUE if the first value is larger than second value

> S 5
otherwise returns FALSE AR

e Returns TRUE.If the first value is smaller than or equal to second 10 <= 5 is FALSE
value otherwise returns FALSE

.- Returns TRUE if the first value is larger than or equal to second 10 >= 5 is TRUE

value otherwise returns FALSE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is FALSE

I= Returns TRUE if both values are not equal otherwise returns FALSE 10 != 5 is TRUE

= File Edit GSearch BRun Compile Debug Froject UOptions Window Help
RELATION.C

woid main()

i
int a,b:
a=106:
bh=5:

clrscr();

printf (
printf (
printf (
printf (
printf (
printf (

F1 Help Alt-F8 Next Msg Alt-FY Prev Meg Alt-F9 Compile F9 Make F10 Menu

Logical Operators (&&, | |, !)

0 The logical operators are the symbols that are used to combine multiple conditions into one condition. The
following table provides information about logical operators.

0 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is FALSE then complete
condition becomes FALSE.

0 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE then complete
condition becomes TRUE.

“opewor Mg oamie

Logical AND - Returns TRUE if all conditions are TRUE
otherwise returns FALSE

&& 10<5&& 12> 10 is FALSE

Logical OR - Returns FALSE if all conditions are FALSE

< > H
otherwise returns TRUE 10<5 || 12> 10is TRUE

Logical NOT - Returns TRUE if condition is FALSE and returns

| < > i

= File Edit 3Search Hun Compile Debug FProject Options Window Help
LOGICAL.C

woid main()
i
int a,b,c,d:
a=16;
b=5;
c= 12;
d=10;

clrscr();

printf (» (la<b) && (c>d))):
printf (» (la>b) 11 (c>d)));
printf (y1lla<b) && (c>d))):
getch():
¥

F1 Help Alt-FO Next Msg Alt-F7 Prev Meq Alt-F9 Compile F9 Make F10 Menu

10<5 && 12>10: O
10<5 i1 12>10: 1
P15 && 12>10)

Increment & Decrement Operators (++ & --)
S

0 The increment and decrement operators are called unary operators because both need only one
operand. The increment operators adds one to the existing value of the operand and the decrement
operator subtracts one from the existing value of the operand. The following table provides
information about increment and decrement operators.

0 The increment and decrement operators are used Infront of the operand (++a) or after the operand
(a++). If it is used in front of the operand, we call it as pre-increment or pre-decrement and if it is
used after the operand, we call it as post-increment or post-decrement.

____ Operatr [Meaning _________|Bxample

Increment - Adds one to inta = 5;
existing value at+; > a=6

++

Decrement - Subtracts one int a = 5;
from existing value a--; >a=4

Pre-Increment or Pre-Decrement
Ce3 f

0 In the case of pre-increment, the value of the variable is increased by one before the expression
evaluation. In the case of pre-decrement, the value of the variable is decreased by one before the
expression evaluation. That means, when we use pre-increment or pre-decrement, first the value of
the variable is incremented or decremented by one, then the modified value is used in the expression

evaluation.

Example Program

#include<stdio.h>
#include<conio.h>

void main(){

int i = 5,3;
j = ++1i; // Pre-Increment

printf("i = %d, j = %d",i,3);

Post-Increment or Post-Decrement
e L

0 In the case of post-increment, the value of the variable is increased by one after the expression
evaluation. In the case of post-decrement, the value of the variable is decreased by one after the
expression evaluation. That means, when we use post-increment or post-decrement, first the expression
is evaluated with existing value, then the value of the variable is incremented or decremented by one.

Example Program

#include<stdio.h>

#include<conio.h?>

void main(){

int 1 = 5,3;
j = i++; [/ Post-Increment

printf("i = %d, § = %d",i,7);

Assignment Operators (=, +=, -=, *=, /=, %=)
B

0 The assignment operators are used to assign right-hand side value (Rvalue) to the left-hand side variable
(Lvalue). The assignment operator is used in different variants along with arithmetic operators. The
following table describes all the assignment operators in the C programming language.

Operator |Meaning ___ |Bomple

= Assign the right-hand side value to left-hand side variable A=15
. A+=10
+= Add both left and right-hand side values and store the result into left-hand side variable _
= A=A+10
_ Subtract right-hand side value from left-hand side variable value and store the result into left- A-=B8B
hand side variable = A=A-B
o Multiply right-hand side value with left-hand side variable value and store the result into left- A*=B
hand side variable = A = A*B
= Divide left-hand side variable value with right-hand side variable value and store the result into A /=B
the left-hand side variable = A=A/B
0= Divide left-hand side variable value with right-hand side variable value and store the A %=B
o—

remainder into the left-hand side variable = A = A%B

= File Edit Search Run Compile Debug FProject Options Window Help

—Ln] ASSIGHNME . C 1=[11=
void main()
i

int a,b:

a=20;

b=40);
clrscr();

printf (» a+=bJl;

printf (» a—=b):

printf(» a*=h);

printf (» a-=b):

printf(» a#=b):
getch();
hy

£0:49 —— —

F1 Help Alt-FG Next Meq Alt-F? Prev Msg AlL-F9 Compile F9 Make F10 Menu

A+=B: 60
A—-=B: 20
A==B: 800
A-=B: Z0
Amod=B: 20_

Bitwise Operators (&, |, *, ~, >>, <<)
_es 0

0 The bitwise operators are used to perform bit-level operations in the ¢ programming language. When we use the bitwise operators,

the operations are performed based on the binary values. The following table describes all the bitwise operators in the C
programming language. Let us consider two variables A and B as A =25 (11001) and B = 20 (10100).

Operator | Meaning _________________________________ |Bample

&

<<

>>

the result of Bitwise AND is 1 if all the bits are 1 otherwise it is O

the result of Bitwise OR is O if all the bits are O otherwise it is 1

the result of Bitwise XOR is O if all the bits are same otherwise it is 1

the result of Bitwise once complement is negation of the bit (Flipping)

the Bitwise left shift operator shifts all the bits to the left by the specified number
of positions

the Bitwise right shift operator shifts all the bits to the right by the specified
number of positions

A&B

= 16 (10000)
Al|B

= 29 (11101)
ANB

= 13 (01101)
~A

= 6 (00110)

A<<2
= 100 (1100100)

A >> 2
= 6 (00110}

Run Compile Debug Froject Options Window Help
BITWISE.C

clrscr();

print j(
printf (
printf (
printf (
printf (
printf (
printf (

getch();

¥

F1 Help aAlt-F8 Next Msg AlL-F? Prev Meg Alt-F9 Compile F9 Make F10 Menu

25&20: 16
25120: 29
25720 : 13
25 : -Zb
20 1 21
ad<Z @ 100
ar»2 ' b

Conditional Operator (?:)

0 The conditional operator is also called a ternary operator because it requires three operands. This
operator is used for decision making. In this operator, first we verify a condition, then we perform one
operation out of the two operations based on the condition result. If the condition is TRUE the first
option is performed, if the condition is FALSE the second option is performed. The conditional
operator is used with the following syntax.

0 Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?7100:200; = A value is 100

= File Edit GSearch HRun Compile Debug Project Options Window Help
CONDITIO.C

wvwoid main()

i
int a,hb:
a=10:
h=15:

clrscr():

printf (y (a<bI?T100:1200);

getch():
¥

F1 Help Alt-F8 Hext Megq AlL-F7 Prev Mesg AlL-F9 Compile F9 Make F10 Menu

The Ualue of A is @ 1600

Special Operators (sizeof, pointer, comma, dot, etc.)
.00V

0 The following are the special operators in ¢ programming language.

sizeof operator

0 This operator is used to find the size of the memory (in bytes) allocated for a variable. This
operator is used with the following syntax.

O sizeof(variableName);

Example
O sizeof(A); = the result is 2 if Ais an integer
Pointer operator (¥*)
0 This operator is used to define pointer variables in ¢ programming language.
0o Comma operator (,)

0 This operator is used to separate variables while they are declaring, separate the expressions in
function calls, etc.

Dot operator (.)

0 This operator is used to access members of structure or union.

Expression
75—

O

In any programming language, if we want to perform any calculation or to frame any condition
etc., we use a set of symbols to perform the task. These set of symbols makes an expression.

In the C programming language, an expression is defined as follows.
An expression is a collection of operators and operands that represents a specific value.

In the above definition, an operator is a symbol that performs tasks like arithmetic operations,
logical operations, and conditional operations, etc.

Operands are the values on which the operators perform the task. Here operand can be a
direct value or variable or address of memory location.

In the C programming language, expressions are divided into THREE types. They are as follows...
O Infix Expression
O Postfix Expression

O Prefix Expression

The above classification is based on the operator position in the expression.

Expression Types in C

O Infix Expression

O The expression in which the operator is used between operands is called infix expression.

0 The infix expression has the following general structure.
Operand1 Operator Operand?

Example

Operand1 . Operator _ Operand?2

) W 4
a+b

Postfix Expression
The expression in which the operator is used after operands is called postfix expression.

The postfix expression has the following general structure.

Operand1 Operand2 Operator

Example

O

P!
d

rand2 Operator

&
I

Operand1

Prefix Expression

The expression in which the operator is used before operands is called a prefix expression.
The prefix expression has the following general structure.

Operator Operand1 Operand?

Example

Operator Operand1 _Operand2

3
+a

Expression Evaluation
masS

0 In the C programming language, an expression is evaluated based on the operator precedence and
associativity. When there are multiple operators in an expression, they are evaluated according to
their precedence and associativity. The operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

0 To understand expression evaluation in ¢, let us consider the following simple example expression...
10+4*3 /2

0 In the above expression, there are three operators +, * and /. Among these three operators, both
multiplication and division have the same higher precedence and addition has lower precedence.
So, according to the operator precedence both multiplication and division are evaluated first and
then the addition is evaluated. As multiplication and division have the same precedence they are
evaluated based on the associativity. Here, the associativity of multiplication and division is left to
right. So, multiplication is performed first, then division and finally addition. So, the above
expression is evaluated in the order of * / and +. It is evaluated as follows...

4%3 ====>12
12 /2===>6
10 + 6 ===> 16

0 The expression is evaluated to 16.

Operator Precedence and Associativity
80

0 Operator precedence is used to determine the order of operators
evaluated in an expression. In ¢ programming language every operator
has precedence (priority). When there is more than one operator in an
expression the operator with higher precedence is evaluated first and the
operator with the least precedence is evaluated last.

0 Operator associativity is used to determine the order of operators with
equal precedence evaluated in an expression. In the ¢ programming
language, when an expression contains multiple operators with equal
precedence, we use dassociativity to determine the order of evaluation of
those operators.

0 In ¢ programming language the operator precedence and associativity are
as shown in the following table.

Precedence | Operator |Operator Meaning Associativity
{) function call
1 1] array reference Left to Right
-= structure member access
. structure member access
I negation
-~ 1's complement
+ Unary plus
- Unary minus
2 ++ increment operator Right to Left
-- decrement operator
& address of operator
* pointer
sizeof returns size of a variable
(type) |type conversion
* multiplication
3 ! division Left to Right
% remainder
+ addition -
4 - ublraction Left to Right
=< left shift -
5 = right shift Left to Right
< less than
6 <= less than or equal to Left to Right
> greater than
== greater than or equal to
7 == |equalto Left to Right
1= not equal to
8 & bitwise AND Left to Right
9 n bitwise EXCLUSIVE OR Left to Right
10 | bitwise OR Left to Right
11 && logical AND Left to Right
12 /| logical OR Left to Right
13 ?: conditional operator Left to Right
= assignment
= assign multiplication
= assign division
= assign remainder
+= assign addition
14 -= assign subftraction Right to Left
&= assign bitwise AND
M= assign bitwise XOR
= assign bitwise OR
<<= assign left shift
= assign right shift
15 , separator Left to Right

Library Functions
... A4

0 The standard functions are built-in functions. In C programming language, the standard
functions are declared in header files. The standard functions are also called as library
functions or pre-defined functions.

0 In C when we use standard functions, we must include the respective header file using
#include statement. For example, the function printf() is defined in header file stdio.h
(Standard Input Output header file). When we use printf() in our program, we must
include stdio.h header file using #include<stdio.h> statement.

0 The C standard library provides macros, type definitions and functions for tasks such as
string handling, mathematical computations, input/output processing, memory
management, and several other operating system services.

0 C Programming Language provides the following header files with standard functions.

stdio.h
conio.h
math.h
string.h
stdlib.h
time.h
ctype.h
setjimp.h
signal.h
assert.h
locale.h
stdarg.h
errno.h
graphics.h
float.h
stddef.h

limits.h

Provides functions to perform standard | /O operations

Provides functions to perform console | /O operations

Provides functions to perform mathematical operations

Provides functions to handle string data values

Provides functions to perform general functions /td>

Provides functions to perform operations on time and date

Provides functions to perform - testing and mapping of character data values
Provides functions that are used in function calls

Provides functions to handle signals during program execution

Provides Macro that is used to verify assumptions made by the program
Defines the location specific settings such as date formats and currency symbols
Used to get the arguments in a function if the arguments are not specified by the function
Provides macros to handle the system calls

Provides functions to draw graphics.

Provides constants related to floating point data values

Defines various variable types

Defines the maximum and minimum values of various variable types like char, int and long

printf(), scanf()
clrscr(), getch()
sqri(), pow()
strlen(), strcpy()
calloc(), malloc()
time(), localtime()
isalpha(), islower()
setjump(), longjump()
signal(), raise()
assert()

setlocale()
va_start(), va_end()
Error, errno

circle(), rectangle()

clearerr fclose fcloseall fdopen feof ferror
fflush fgetc fgetchar fgetpos fgets fileno
f lushall fopen fprintf fputc fputchar fputs
fread freopen f=canf f=eek f=etpos ftell
furite getc getchar gets getw pErTor
printf putc putchar puts puti remove
r'ename rewind rmtmp scanf setbuf setvbuf
sprintf gscanf strerror _strerror tempnam tmpfile
tmpnam ungetc unlink viprintf v scanf vpr intf
vscanf vsprintf vescanf

buffering modes BUFS1Z
_F_BIN _F_BUF
_F_ERR _F_IN

cgets
cputs
getche
gotoxy
inport
lowvideo

outport
puttext
textcolor

wherey

clreol

cscanf

getpass
highvideo
inporthb
movetext
outporth
_setcursortype
textmode
window

clrscr
delline

g ttext
insline
inpw
normideo
outpw
textattr
ungetch

cprintf

getch
gettextinfo
inp

kbhit

outp

putch
textbackground
wherex

BL INK
_NORMALCURSOR
_wecroll

COLORS
_SOLIDCURSOR

directvideo
text info

_NOCURSOR
text modes

—Ln] Help Z=[11=
abs acos, acosl asin, asinl
atan, atanl atan, atanZl atof , _atold
cabs, cabzsl ceil, cei 1 COS, cozl
cosh, coshl exp, expl fabs, fab=sl
f loor, floorl fmod, fmodl frexp, frexpl
hypot, hypotl labs ldexp, ldexpl
log, logl logl0o, loglol matherr, _matherrl
modf , modf 1 poly, polyl PO, powl
powli, powli] zin, zinl sinh, zinhl
zqrt, zqrtl tan, tanl tanh, tanhl
complex (struct) _complex]l (struct) EDOM
ERANGE exception (struct) _exceptionl (struct)
HUGE_UAL M E M_LOGZE T

= File Edit 3Search Run Compile Debug FProject Options Window Help
—Ln] MATH.C 1=[11
ftinclude<stdio.h>

ftinclude<conio.h?

finclude<math.h>

ftdef ine PI 3.14159265

void main()

i

float wval:
clrscr();

% Example for Math Functions=-

printf (, abs(-10));
printf (C » celill(
printf (» Tloor(
printf (» =qrtibgh));

val = PI -~ :

printf (cos(18C=ual));
printf (sin(18Gwal));
printf (tan(18Ckwal));

getch():

3:11 :
F1 Help nAli-F8 Next Msg Alt-FY —F9 Compile F39 Make F10 Menu

abs(value): 10
ceil(123.456): 124 . OEE0E6
floor(123.456): 123 .000000
sqrt(625): 25.000000
cos(9@): —1 . CEOEEEE

Sin(90) : O, COEEEE
tan(90) 1 —0, OEEEEE

_fmemccpy
_fmemset

_f=strcspn
_f=strncat

_fstrpbrk

_fstrstr

mMEmCmp
movedata
strchr
strdup
strlur
strnicmp
strset
strupr

_fmemchr
_F=strcat
_fstrdup
_fstrncmp
_Fstrrchr
_fstrtok
mEmCpL
MOINEM
strcmp
_strerror
strncat
strnset
strspn

_fmemcmp
_f=strchr
_f=stricmp
_fstrnicmp
_fstrrev
_f=strupr
memicmp
setmem
strcmpi
strerror
strncmp
strpbrk
stratr

_fmemcpy
_fFstrcmp
_Istrlen
_f=strncpy
_fstrset
meEmCCpy
mMEmMmMoVE
stpcpy
strcpy
stricmp
strncmpi

strrchr
strtok

_fmemicmp
_fstrcpy
_Istrlwr
_F=strnset
_Fstrspn
memchr
memset
strcat
strcspn
strlen
strncpy
strrev
strxfrm

